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1. INTRODUCTION

For any integer n~O and any real fE L1(I) with 1= [-1, IJ, let En(f)
denote the error of the best L I-approximation to f with polynomials of degree
not exceeding n (let Pn denote the set of all such polynomials). We are
interested in upper and lower estimates of En _ I (f) and particularly in its
asymptotic behaviour as n tends to infinity. In the literature we found,
besides the special function f(x) = x n, only two classes of functions where
these questions have been answered to some extent: Estimates and
asymptotic behaviour are given in [2, p. 318-319J and in [4, p. 42] for
functions like f (x) = (a - x)S with real s and real a> l. On the other hand,
the order of En-I(f) is determined by the inequality (see [9, p. 84])

mn= inflpnJ(x)l:< 2n- 1n! En-I(f):< sup Ipn)(x)1 =Mn,

up to a factor Mn/mn. Under additional assumptions on pnJ there exist
asymptotic results for the corresponding Lcx,-error [6, p. 79].

According to a theorem of Markoff (see Theorem 2 below), for a wide
class of functions (including every f with monotonic (n - 1)th derivative),
the error En _ I (I) is given by

(1.1 )
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where sgn(t) is a well-known unimodular function (see (2.2) below). The
weakness of (1.1) stems from the fact that the smallness of the right-hand
side of (1.1) depends on cancellation. If pn) is continuous, then partial
integration or Peano's therem [3, p. 69] yields

with

(1.3)

The function Vn(t) turns out to be positive on (-1,1) (Theorem 1), and
therefore (1.1) and (1.2) imply for every fwith nonnegativepnl that

I

En-I(f) =L
I

VnCt)pn)(t) dt, (1.4)

with a nonnegative integrand. If pnl changes sign we still have the general
inequality (see Theorem 2)

In order to answer the above-posed questions with the aid of (1.4), we
approximate Vn(t) by simpler functions. Thus, we show (see Theorem 5) that
Vn(t) is of the same magnitude as

and that Vn(t) deviates from (see (2.5) for the definition of Yn)

2 V2 (n + 1) ( 1 - t 2
) n + 1/2

V*(t)=-_· Y . --
n 7t n! n 2

(1.5)

( 1.6)

by less than (n + 1) 8 1 - n/ n!. As application we will handle functions like
eaX, eax\ cos WX, x n+m, and (x - t):-1. Typical results are

for n -400

and

for n -400.
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Many of our results depend on a representation of Vn(t) by means of an
integral (Theorem 4). We found it remarkable that this integral yields an
explicit representation of certain trigonometric sums. Thus, we obtain, for
example,

[n/2] (nl )nL (_1)/ cos--
/= -[n/2] n + 1

= 2
1

-
n
(n + I) . JI (1- u

2t du ~ 2 1 - n • . q:ln. (1.7)
n _I 1 +(-It U 21n +1) V TIl"

2. NOTATIONS

In the sequel n resp. k denotes a natural number resp. integer. The
ChebyshefT-polynomial of the second kind

Un(X) = sin(n + I) elsin e;

has the n zeros XI' x2 , ... , xn ' where

nk
Xk=Xn k=-COS--,

. n + I

Let

x = cos e

for k E 7L. (2.1 )

where

(2.2)

sgny =yllyl

=0

then

if yi=O

if y = 0;

sgn(-t) = (-It sgn(t),

and (see [9, p. 72; 2, p. 94])

and (2.3)

II tksgn(t) dt = 0
-I

= (-It. 21
-

n

For a ~ 0 let

for 0 ~k <n

for k = n. (2.4)

II 2<> ylnr(a+I)
Y",= _1(1-U) du=B(I/2,a+I)= r(a+3/2) . (2.5)
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We deduce
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Yo= 2; YI/2 = n/2; (2.6)

Equation (2.5) and Stirling's formula [1, p. 257; #6.1.39] imply
a 1/2y" ---+ n 1

/
2 as a ---+ 00, and therefore

for a ~ I, (2.7)

since a 1
/
2y" increases for a ~ 1.

We write x+ = max{x, O} and define the function

00

F(a)= I (-llexp(-n2k 2/a)
k= -00

for a> O. (2.8)

This representation of F(a) is advantageous for a ~ I and yields, for
example, F(a) ~ 1 - 2 exp(_n2

/ a) ~! for a ~ 1. Using properties of the
theta-function [10, p. 476] we obtain

00

F(a) = yI(if7c e- o / 4 . I e-k(k+ 1)0 > yI(if7c e- o /4• (2.9)
k= -00

For any IE L1(I) let Pf= Pt.n-l denote the polynomial of Pn - I that inter
polates I at the zeros of Un(x). Mn stands for the set of all IE LI(I) for
which (f- Pf) sgn does not change sign on I, and Fn (resp. F:) denotes the
set of all IE L 1(1) that are representable in the form

x (x _ t)n-l

I(x)=p(x) +L
1

(n-I)! dg(t),

where g(t) is of bounded variation (resp. increasing) on I and p(. ) E Pn _ I .

Note that IE F: means that j(n-l) increases (f(n-21 being absolutely
continuous), and we have

(2.10)

This is trivial if n = 1. Let therefore n ~ 2. We may suppose p(x) == 0 and
g(-I) = O. We may further suppose that g(t) is strictly increasing (the
general case then follows by approximating g(t) by g(t) + e(t - I )). Then
1-Pf has exactly n roots, each of which is simple. Otherwise

would have at least three roots YI <Y2 <Y3' This would imply 1/(Y2 - YI)
f:: g(t) dt = 1/(Y3 - Y2) f:: g(t) dt, and thus g(t) == constant on (yl' Y3) since
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get) increases. We remark that (f - Pf) sgn U" ~ 0 for fE F:. This follows
from the special example f(x) = x" by means of a homotopy argument.

3. SOME ELEMENTARY RESULTS

From (1.3) we deduce for tEl:

1 II0"k)(t) = (n-k-I)!' _I (t-U),,-k-I sg,,(u)du

for 0 ~ k < n,

= sg,,(t) for k=n and t=t=x!,x2 ,••• ,x", (3.1 )

and this yields immediately statements about the zeros of V,,(t) and its
derivatives.

THEOREM 1 (Properties of the Peano-kernel V" (t».

(a) V,,(t) is an even function.

(b) V0 ~ k < n: V~k)(t) has exactly k zeros on (-1,1).

(c) V,,(t) is positive on (-1, 1) and strictly increasing on [-1,0].

Proof (a) This follows from (1.3). since (2.3) and (2.4) imply

-I 1

J (-t - U),,-I sg,,(u) du =J (-t + V),,-I sg,,(-v) dv
-I I

I

= - i (t - V),,-l sg,,(v) dv

I

= L1(t - V),,-I sg,,(v) dv.

(b) Equation (3.1) and (a) imply that +1 and -1 are zeros of V,,(t) of
order (n - 1). Using Rolle's theorem k times, we deduce that 0"k)(t) has at
least k zeros on (-1, 1). Suppose now that 0"k)(t) has more than k zeros on
(-1,1). Then (again by Rolle's theorem) V~,,-I)(t) possesses at least n zeros
on (-1,1). But V~,,-I)(t) is a piecewise linear function, that vanishes for
t = ± 1 and which consists of (n + 1) linear (and nonconstant) pieces;
therefore 0,," -I)(t) has at most (n - 1) zeros on (-1. 1).

(c) By (2.3) we have sg,,(t) = 1 for t <XI' and therefore (using (1.3»
V,,(t) >0 for -1 <t<xl , Because of (b) we deduce V,,(t) > 0 on (-1,1).
Since V,,(t) is an even function, the zero of V~(t) is x = O. Since V" (-1) = 0
and V,,(t) > 0 on (-1,1) we have V~(t) > 0 on (-1,0).
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Next we state the above-cited result of Markoff and some consequences of
it.

THEOREM 2 (Representations and estimates of En _ I (f».

(a) En_l(f);~IS~d(t)sgn(t)dtl iffEL'(I).

(b) (Markoff) En-I(f) = Ilf - pt lll = IS~ d(t) sgit) dtl iffE M n·

(c) En-,(f)=IS~l Vn(t)dg(t)1 iffEMn(lFn·

(d) IS~l Vit)dg(t)I~En_l(f)~S~. Vn(t)ldg(t)1 iffEFn·

Proof. (a) E n- 1(f) = Ilf- p* III ~ IS~I (f - p*) sgn I= IS~ dsgnl with
p* EPn-. and the use of (2.4).

(b) See [2, p. 91].

(c) If qJ(t) is integrable and g(t) is of bounded variation on I, then

I xliL
1

dXqJ(X) L
1
(x_t)n-I dg(t) =L

I
dg(t) It (x_t)n-l qJ(x)dx, (3.2)

and therefore (use (2.13), (2.4) and (1.3»

• 1L. sgix)f(x)dx=(-I)"L
1

Vn(t)dg(t) for fEFn. (3.3)

This and (b) imply the proposition.

(d) The left inequality is an immediate consequence of (a)
and (3.3). Let f(x)=p(x)+S~I«x-t)n-I)/(n-l)!)dg(t). Put h(x)=
S~. «x-t)n-I)/(n-l)!)ldg(t)l· Then h ±fEF: eMn, and therefore

{(h - Ph,n) ± (f - Pt.nH . sgn Un ~ O.

We deduce

If(x) - Pt.n(x)1 ~ Ih(x) - Ph.n(x)1 for -1 ~x ~ 1,

and therefore
I

En_I(f) ~ IIf - ptll. ~ II h - Phil. = En_.(h) = L. Vn(t) Idg(t)l·

We continue with an alternative representation of Vn(t).

PROPOSITION 1. If n ~ 1 and -1 ~ t ~ 1, then

n

n! Vn(t) = (t + l)n + 2 L (_I)k (t - x k ),:·

k~1
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Proof By (2.2) and (2.3) we have

n

sgn(U)=(l+u)~+2 L (-I)k(U-Xk)~
k=1

and therefore (1.3) implies
tnt

(n-I)!Vit)=f (t-u)n- l du+2 L (-I)kf (t-u)"-Idu.
-I k=1 ~

Xk<t

Remark. Since (t - Xk)~ decreases in k, we have

275

for -1 <:. t <:. 1. (3.4)

We conclude with some lower estimates of Vn(t).

THEOREM 3 (Quantitative lower estimates of Vn(t))

(
1 - t2 )n 1

(a) Vn(t) ~ -2- . n!'

(n+l)Yn (l_t2)n+112~_~ *
(b) Vn(t) ~ /2 2 n! - 4 Vn(t),

1 _
(c) Vn(t)~3Vn(t).

Proof (a) The nth Legendre-polynomial is given by [I, p.334;
#8.6.18] Pn(x) = Ij(2 nn!) (dn)j(dxn)(x2- 1)". Using IPn(x)1 <:. 1 for
-1 <:. x <:. 1, and f~1 xmpn(x) dx = 0 for 0 <:. m < n, we obtain for any I with
nonnegative continuous I<n):

Since fl n) is an arbitrary nonnegative continuous function, the proposition
follows.

(b) We have [I, p. 785; #22.11.4]

'/(l-x2)U(x)= (n+l)yn(_I)n d
n

(l_x 2)n+1/2
V n 2n.+ I r(n + 3/2) dxn

= (n + 1)(-1)" Yn d
n

(I _ 2)n+ 1/2
n! 2n + 1 dxn x .

640/37/3-6
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Using f~ 1~ UII(x) x m dx = 0 for m < n [1, p. 774; #22.2.5], and

IUII(x) vT=?1 = Isin(n + 1) el ~ 1 for -1 ~ x ~ 1,

we deduce for any j with nonnegative continuous j(II):

(I VII(t)j(II)(t) dt ~ I(/(X) UII(x) vT=? dx I

= (n + l) YIIJ I (1-x2)1+1/2f")(x)dx
n! 2"+ 1 -I •

(c) Add the inequalities (a) and (b) and use (2.9).

4. AN INTEGRAL REPRESENTATION OF VII(t)

THEOREM 4. For -I < t < 1 and n E IN we have

2 V2(n + 1) (1_t2)n+I/2 1 (l-u2)"du
V(t)= -.J

n nn! 2 -11-(t+ iu v1=7)2(n+,)'

Proof Let XI < t <x l +I' Proposition 1 yields

I

n! VnCt) = (t-XO)" +2 I (-It(t-xk)"
k~1

= (n + 1) .2 1
-

11 I Resp{z),
Rez<t

since the rational function

(4.1 )

F(z) = (Z2 - 2zt + I)"
1 _ Z2(n+ 1)

ZIl(Z + liz - 2t)"
l_z 2(n+l)

has poles exactly at the 2(n + 1)th roots of unity and since (put
Zk = - exp(kni/(n + 1)) the corresponding residues are given by

z~· 21(Xk-t)" -z~+12n-I(Xk-t)"

Resp{zk)=_2(n+l)z~II+1 n+l

(-I)k2n- l (t-Xk)" _
= =Resp{zk)'

n + 1

Let F 1 , F 2 , and F 3 be paths that join t - i vr=t" with t + i v'f=7, where
F 1 is a straightline, F 2 lies outside the unitcicle, -I is positively encircled
once by F 1 - F2 , and F 3 is the image of -F2 under the mapping Z f---+ liz.
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Since F(I/z) = -z2F(z), the substitution z = l/u implies

f F(z) dz = f F(z) dz,
-fz f,

277

(4.2)

and therefore (4.1), the residue theorem, (4.2), and Cauchy's theorem yield

(n+ 1)2-n f (n+ 1)21~n f
n! Vn(t) = . F(z)dz= . F(z)dz. (4.3)

7rl f,-fz 7rl f,

This implies the desired result by putting z = z(u) = t +iU~. By
continuity we get the desired result for t E {xk I 0 < k ~ n} too.

Since (Z2 - 2zt + 1) vanishes at the endpoints of r l , we obtain by
differentiating (4.3) with respect to t for 0 ~ k <n:

(n - k)! v<"k)(t)

(n + 1)(-I)k 21 +k-n f (Z2 - 2zt + 1)n-k . Zk
= ~ni f, 1 _ z2(n+ I)

For t = 0 and k = 2m < n we obtain, by comparing with Theorem 3:

[n/2] 1 in In- 2m
') (-1)/. cos--

/= :[n/2] n + I.

(n+l)2 2m + l
- n 1

= (_I)m -'---'-n--- . LI

and especially (for m = 0) (1.7).
We remark that Gould [5] proved

(1 - u2y-2m u2m du
1 + (-IY u2(n+ I)

[n/2] (ni )n+ 1L (-1)/ cos-- = (n + l)2-n
/= -[n/2] n + 1

an identity that is equivalent to f~ I Vn(t) dt = 2 - n.
For -1 < t < 1 and 0 < qJ < n the partial sums of

L~o {t +i~ cos qJ}2
j
(n+l) are dominated by 2/«1 - t 2

) sin 2 qJ). Using
in Theorem 4 the substitution u = cos qJ, we obtain
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2(n+l) (l_t2y+l!2 " (sinlp)2"+1
V,,(t) = " J. y?-=t dlp1C' 2 n! 0 1 - (t - t2- 1 cos lp)2("+ I)

= 2(n + 1) (1- t2y+l!2
1C' 2"n!

and therefore [1, p. 784; #22.10.10, and p.777; #22.4.2] the following
expansion in Gegenbauer polynomials.

PROPOSITION 2.

2"+2 (1 - t2y+l!2 ~ C~j(~~l)(t)

V,,(t) = 1C (2n: 1) , L.. C(,,+I) (1)n. j=O 2j(,,+ I)

holds for -1 < t < 1 and n E IN.

5. THE MAGNITUDE OF V,,(t)

Put (n ~ 1; -1 < t < 1)

V,,(t) = V:(t) . {l +R,,(t)}

with

and therefore

(5.1 )

LEMMA 1. (n ~ 1; -1 < t < 1.)

(a) IR,,(t)1 ~ l/n(1 - t 2
),

(b) y" ·IR,,(t)1 ~ 8· {4(1 - t2)} -",

~ 2t2(,,-I)/(1- t2),

for t 2
~ i

for t 2
~ i.
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Proof (a) Since 0 ~ b < 1 implies 1 - bn + 1
~ (n + 1)(1 - b) bn, we

deduce from (5.2):

YnIRn(t)1 ~ (n + 1)~1 _ t2)(1 (1 - u
2t- 1

{t
2+u

2
(1- t

2
)} du

1 2n + 1
~ (n + 1)(1 - t2) Yn-I = 2n(n + 1)(1 _ t2) . Yn'

(b) Using

we obtain from (5.2):

1 flYnIRn(t)I~ 1-t2 _I {(1_u2)(t2+u2[1_t2])}n-ldu. (5.3)

This gives the desired result by estimating the integrand in (5.3) by its
maximal value; this integrand is maximal for 1 - u2= 1/(2(1 - t2)) if t2

~!,

and for u = 0 if t 2 ~ !.

THEOREM 5. (n ~ 1; -1 < t < 1.)

(a) f Vn(t) ~ Vn(t) ~ 3Vn(t)·

(b) IVn(t)- V:(t)/~2.V1=?(n~1) cpn-I(t),
1r n.

with

cp(t)=!,

= t2(1 - t 2)/2,

for t2 ~!

for t2~!.

Proof (a) The left inequality was stated in Theorem 3(c). Let
t2 < 1 - lin and thus n ~ 2. Then (5.1), Lemma la, (1.5), (1.6), and (2.7)
yield (observe V:(t)/Vn(t) ~ in t2) Vit) ~ 2V:(t) ~ 3Vn(t). Let now
t2~ I-lin, and thus n(l-ltl)/(l + Itl)~ (1 +Itl)-2 ~ 1. Using (3.4) we
obtain

(l-ltl)n (1_t
2
)n( 2 )n1

Vn(t) = Vn(-Itl) ~ n! = -2- 1 + It I n!'

~Vn(t)· (1+ ~~:::r~Vit)exp(n ~~:::)~3Vn(t).

(b) This follows from (5.1), (1.6) and Lemma l(b).

640/37/3-7
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6. THE ASYMPTOTIC BEHAVIOUR OF Vn(t)

In this section we will determine a rather simple function *Vn(t) with
Vn(t) = *Vn(t) . {l + O(1/n)}, where 0(·) is independent of nand t. We start
with a simple consequence of Lemma 1 (use (2.7)).

3 log n
for It I~ 1 - 2n and n ~ 2.

Remark. Similarly one obtains 1~(t)1 ~ ck ·n-k for It I~ 1 - (k + 1) X
logn/n, and even Rn(t)=O(vne- n) for Itl~I-i/vn. Next we will
show that (1 -Itl)n/n! is a good approximation for Vn(t) in the
neighbourhood of 1.

LEMMA 3.

v (t) = (1-ltI)n (1 + r (t))
n n! n

with

1
for 1 > It I~ 1 - ( 1) 1 and n ~ 2.n + og n

Proof Since Vn(t) is an even function, we may suppose t ~ 0.
(1 - cos x) . x- 2 decreases on [0, n/2], and therefore

for Ixl ~ n/2. (6.1 )

Proposition 1 represents Vn(t) by an alternating series and implies

for -1 < t ~ 0,

and by (6.1) we have (for XI < t ~ -1 + I/«n + 1) log n))

(
t - X I ) n = (1 _ 1 +X I ) n & ex l-n 1 +x I I
I+t I+t "" P I+t\

~ exp 1(n + ;;;~1 + t) !~ n\ .

Remark. Similarly one obtains rn(t) ~ n- k for It I~ 1 - 1/
(k(n + 1) log n) and n ~ 2 and even 1rnCt)1 ~ e- vn for .1 tl ~
1 - (n + 1)-3/2.
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THEOREM 6. For n ~ no and 1tl < 1 we have

with

281

if It I~ 1 _ ~ log n
'"" 2 n '

(1-ltIY
=

n!

where

and

1
if It I~ 1 - ( 1) I 'n + ogn

(
1 - t

2 )n 1 l G(a) I
= -2- liT e

u
/
4

F(a) + n + 1 \ else,

a=(n+1)(1-t2
),

Proof It remains the case when

[
1 3 log n ]

t E -1 + (n + 1) log n ' -1 + 2n '

which implies (for n ~ 3)

3 log n 2 1
1- 1 <.t <,1- ( 1)1 .n + n + og n

(6.2)

We write Vit) = 1/(n!)«1 - t2)/2Y' Fn(a) with (according to Proposition 1)

Fn(a) = Cit=~o)r+2 tl (_I)k C(tl-=-~~)+r· (6.3)

We have to handle terms of the form

with

2{I-coswk) 2-z-2~
11 = 11k = - ,z z
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where
a 2

Z=--= 1-t
n + 1

and

Because of (6.2) we may restrict our considerations to 1/1og n ~ a ~ 3 log n.
Furthermore, we suppose n~ no. By (6.1) we have

o<Z <L and rtk ~ (wZ;z - z)/2. (6.4)

Put 1:= [2 Ja log n1+ 1. We have by (6.4)

and

and therefore (6.4) implies z· rtf ~ w;/3, and

(1 - rtf)~ ~ exp(-nrtf) ~ exp(-nw;/(3z)) ~ n- 4
• (6.5)

Now we consider 0 ~ k < 1. We have

and

and

We deduce

\ z 2 _I \ 3 2 1 2 1 4 -2/
log(1-rtk)= ("4-WkZ + /32 Z +4Wk-TwkZ \

+ O(Z3 + W~Z-3),

and (write nlog(1-rtk))=(n+ 1)log(···)-nlog(... ))

and
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= F(a) + n ~ 1 1Caz3; 8a ) F(a)

+ f: (_I)ke-k2,,2ju / (aZ
+a) kZ~Z _ e~4) I

k= -00 \ 4 a 2a \

+ O(logSnjnZ),

since L~-oo e- k2,,2ju = 0(1 + y'a) and (for example)

I
f: (-1 )kek2,,2ju I~ e_i2,,2ju ~ e- 4,,2iogn ~ n - Z.

k=i

Using (6.5) and

00

F'(a) = I (_I)k kZn2a-Ze-k2,,2ju
k= -00

and

00

(aZF'(a))' = I (_I)k k4n4a-Ze-k2,,2ju,
k= -00

we obtain
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This implies the assertion, since we have F(a) ~ n- 3
/
4 by (2.9), and

G(a) = O(logZ n) by akF(k) (a) = 0(1) for k = 1,2 (note that aF'(a) and
(aZF'(a))' are alternating series with bounded terms).

Remark. From (2.8) and (2.9) one may obtain

F'(a) = F(a) . 0(1 + a-I), and F"(a) =F(a)· 0(1 +a-Z).

This yields G(a) = F(a) . 0(1 + a Z), and thus

(F(a) + G(a) ) (1 + O(ljn)) = F(a) . (1 + 0«(1 +aZ)jn))
n + 1

=F(a). (1 + O(n-llogZn)).

7. EXAMPLES

Iff is continuous, then, according to a theorem of Jackson [9, p. 69], the
minimizing polynomial is uniquely determined. Therefore, the minimizing
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polynomial of a continuous function/is even if/is even, and odd if/is odd.
This result and [2,p.94] En_I(Xn)=21-n imply

(7.1 )

Proof Put /(x) = g(x2). We shall show that / - Pt.2n-l has exactly the
zeros X2n .l ; X2n .2; "'; x 2n .2n ' and changes sign at these points. Note that
X2n ,k *' 0. Since/is even, Pt.2n-1 is even too. If

n-l
/ - Pt.2n-l = g(x2) - L akx 2k = g(x2) - Pn_l(X2)

k=O

had another zero or a multiple zero on (-1,1), then g(U)-Pn_I(U) would
have at least (n + 1) zeros on [0, 1). This is impossible by Rolle's theorem.
The function xg(x 2

) may be handled similarly.
Next we collect some identities and inequalities.

LEMMA 5 (k denotes a nonnegative integer.)

(a)

(b)

(c)

IL
I

Vn(t) dt = 2 1
-

njn!.

fl V*(). 2k d = 21-n-2k (2k)! (n + I)
n t t t k'( k 1)' .

-I . n+ + .

I (2k)'
f V(t)·t2kdt=n.2-n-2k .
-I n k!(n +k + I)!

lvn+! I!X + .
Yn Yn+k+I/2

(7.2)

1 gl-n n+ 1
(d) f IVn(t) - V:(t)1 t2k dt ~-,-kl'

-I n. +

Proof (a) Apply Theorem 2(c) to the function /(x) = x n and use (7.1).

(b) Using (1.6), (2.5) and (for a, fJ?t 0)

fl 2a2/3 _ ( 1)_F(a+l)F<P+D
-I (l-t) t dt-B a+ l,fJ+T - F(a+fJ+D '
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we obtain

J
I * 2k _21-n(n+l)r(Dr(n+l)r(n+~r(k+D
-I Vn(t) . t dt - n. n! r(n + ~) . r(n + k + 2)

= 2
1
-

n
(n + 1) r(Dr(D Ii (2j -1).

n(n + k + I)! i ~ I 2

(c) This is proven similarly to (b).

(d) This follows from Theorem S(b) and from

JI II=? t2k dt = B (~ k +~) = r(n r(k +D.
-I 2' 2 r(k+2)

For n~ 1 and k~O we put

= 2
n
-

1
. (n + 2k)! . JI V ( ). 2k dt

Cn,k (2k)! -I n t t .

We have cn,o = 1 by Lemma 5. Theorem 5, Lemma 5, and (2.7) imply

(n + 2k)! -k (n + 2k)
Cn,k ~ 8 4kk!(n + k)! = 8 . 4· k '

and
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(7.3)

~(n+2k)n+l+Vk k. 8(n+2k) (n+l+Vk). (7.4)
8 k n + 1 + k ~ 4 Cn,k ~ k n + k + 1

Furthermore, we have by Lemma 5 (e = en,k with lei ~ 1)

_ (n+l)(n+2k)! \ 4k+l-nkl(n+k+1)!/
cn,k-4k.k!(n+k+1)! /l+e. (k+1)(2k)!n! \'

Since (2 kk!(n + k + 1)!)/«k + 1)(2k)!) increases for k ~ n and decreases for
k ~ n, we obtain

= (n+1)(n+2k)! {I . 23+k-n}
Cn,k 4k .k!(n+k+l)! +e .

THEOREM 7. (a) IffE cn+ 2(I), then

2n
-

1
• n! En-1(f) = If(n)(O)1 + O(I/n){lf<n+ 1)(0)1 + dn,I}'

(7.5)
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(b) If fE Mn possesses a Maclaurin expansin f(z) = 'L.'t!=o akzk,
which is convergent for Iz I :< 1, then

Proof (a) We have pn)(t) = f(n)(o) + tf(n+ 1)(0) + h(t) and

I 1 II IL
1

Vn(t)lh(t)ldt= L
1

Vn(t) fo (t-u)f 1n +2)(u)du dt,

1 I

:< L
1

Vn(t)· t f
o

If(n+2)(u)1 du dt,

and

2-
n

1 1 \ !:< 7 f
o

(1 - u2)-n/2 t t(1- t2)n. 11 + v(n + 1)(1 - t2) dt du

2- n
\ 1 vn+I I

=7 12(n + 1) . Yl+n/2 + 2n + 3 . Y(n+3)/2 \

2 1- n=-, O(ljn).
n.

Using Theorem 2 and the triangle-inequality, and Lemma 5(a), we obtain

En_I(f)~ 1(. Vn(t){f 1n )(0) +tf(n+I)(O)} dt 1-(I Vn(t)lh(t)ldt,

~ 2~~n !lf1n)(0)1- 0 (d~'l ) (.
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On the other hand, we have (using (7.1) and Theorem 2(d))

(
jlnl(O) tn ) (jln+ 1)(0) tn+ 1 )

En-l(J)~En-l n! +En- 1 (n+ I)!

(
f(nl(O)tn f(n+ll(O) n+l)

+En- 1 f(t)- n! - (n+I)! t ,

~21~nljlnl(0)1+ 2-
n

,If(n+I)(O)I+f
l

Vn(t)lh(t)ldt
n. (n + I). ~ 1

= 2~~n Ilf(n)(O)1 +O(I/n)(lf(n+ 1)(0)1 +dn. I )}.

1

(b) ±En-1(J) = L
1

Vn(t)f(n)(t)dt

_ f (n + k)! 1 k

- f;:o an+k k! L1 Vn(t) t dt,
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In general we need jln) (t) * 0 on I in order to apply Theorem 7(b). If f(n)(t)
changes sign on I, one often may use the following theorem (put dn•k =
SUPI jjln+2kl(t)1 . (I - t2t/2 for n ~ 1 and k ~ 0).

THEOREM 8 (n~ I; k~ I; o~an~ I; Yn.k~O)

(a) /ffE cn+ 2k(I) andf(nl(t) +Yn.kt2k ~ ofor It I~ an' then

k-l ,

2n - 1 • n!E (J)= '\' c n. f(n+2m)(0)
n-l ~o n,m(n+2m)!

+ 0(1)(1 -a~t/4 . dn.o+ 0k(n-k)(Yn.k +dn.k ).

(b) /ff possesses a Maclaurin expansion,
00

f(z) = L amzm,
m=O

which is convergentfor Izi ~ I, and iff(n)(t)~Ofor It I~an' then

2n- I En_1(J)= I~o cn.man+2m I+ 0(1)(I-a~t/4. dn.o/n!.

Remark. The first error term in (a) stems from the fact that we do not
know the sign off(nl(t) for It I~ an' The second error term comes in since we
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replace the assumption pnl(t);;;" 0 by pnl(t) + Yn,kt2k ;;;.. 0 for Itl ~ ~n' The
last error term finally is a consequence of the truncation of the Taylor-series
expansion ofpnl(t). The last two error terms may be written as

o -k (2k)! 2
k
r(k +D )

(n ) 4kk!' Yn,k + r(2k) dn.k ·

Proof (of Theorem 8). (a) We have

Ipnl(t)1 ~f(nl(t) + 2Yn.kt2\ for It I~ ~n'

~ d . (1 - t2)-n/2 else. (7.6)
"""'-=::: n,O '

By Theorem 2(d), (7.6) and Theorem 5, and (7.4) we obtain
I I

O~En_I(f)- L
I

Vn -/(n) ~LI Vn · {If(n)l-f(n)}

since (by (1.5), (2.5) and (2.7»

Using Mclaurin's expansion for pnl(t) we get

If
I vn(t)f(nl(t)dt-21-n'i:l Cn.m ,pn+2m)(o) I
-I m=O (n+2m).

I
I I (t U)2k - 1 I

= f Vn(t)f - f(n+2kl(u)dudt,
_I o (2k-l)!

d fl fl,,( n.k V (t)t 2k - 1 (l-u 2)-n/2dudt
~ (2k - I)! -I no'

~ dn.k JI V (t) t2k (1 - t2)-n/2 dt
"" (2k - I)! -1 n '

d 2
1

-
n

( 1 ),,( n.k .--2kr k+- n- k

~ (2k - I)! n! 2'

where the last inequality follows by (1.5), (7.2), (2.5), and (2.7).
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(b) By Theorem 2(d) we have

and therefore (the last inequality follows from (7.7»

289

Remark. If I = [-I, II is replaced by [a, bI, then Theorem 7(a) reads as
follows

En_I(f: [a, bl)

= :! (L/2)n+1 . (Ipn>(e)1 + O(l/n){L If1n+l)(e)1 +L 2Dn.tl),

where

and

e = (a +b)/2; L = (b-a)/2,

1. EXAMPLE. f(x) = eax
• Theorem 7(a) yields

Using Theorem 7(b), we obtain

00 21
2n- 1 E (f) I In '\' en.l · a

. n-I = a . t:-o (n + 2/)!'

and Theorem 8 implies, for example,

n! 2n
-

1
• En-I(f)
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Similarly, we might treat the function f(x) = fg eX'dg(t) with a monotonic
function g, and obtain (for example)

2. EXAMPLE. f(x) = cos wx with real w.
Since f is an even function we have E 2n _1(I) = E 2n _if). For Iw I~ nl2

we deduce from Theorem 7(b)

00 (2)k
22n - 1E (f)- 2n "\' -w

2n-1 - W t:o C2n ,k (2n + 2k)!' (7.8)

and from Theorem 8(a) (with k = 2, (j2n = 1, Y2n.k = 0, d2n ,k = W
2n +4

;

observe (7.5) and w 4 = O(w 2»,

22n - I (2n)! 2 -I 2 2
- ...........2n- E 2n-I(I) = 1-w n 18 + O(w In ). (7.9)

w

For Iwi> nl2 we use Theorem 8(b) (with (j2n = nl(2w), and d2n ,o = w 2n ) or
Theorem 8(a) (with k = 2, (j2n = nl(2w), Y2n,k = 0, d2n ,k = w 2n +4) and this
leads to an extra error term of the form (put q = 1 - (nl(2w»2)
«w 2n )/(2n)!) , O(qn/2) in (7.8), and O(qn/2+w 4n- 2) in (7.9).

We remark that (7.8) does not hold true for all w, since, for example, for
n = 1 the value of the right hand side of (7.8) is

I 1

w 2 . f Vt(t)coswtdt=2w 2J. (l-t)coswtdt=2(1-cosw),
-I 0

and especially 0 if w = 2n.

3. EXAMPLE. f(x) = eax2 with a =1= O.
According to Lemma 4 this function is in the Markoff-class M 2n . We

apply Theorem 7(b) and obtain (let m ~ n 1/2 )

00 ak
±2 2n -

1 ·E2n _
l
(f)=a n . "\'

~o C2n ,k (n + k)!

1
m-I oo!

=an . L'" + L ... =an{I +//}.
k=O k=m
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Since «2n +2k)!)/(4k(2n +k)! (n + k)!) decreases in k, (7.3) implies (C 2n ,k)1
«n +k)!) ~ 8/(k!n!), and therefore n! ·IIII ~ 8, L1"=m (lalk)/(k!) = 0u(1/n).
From (7.5) we deduce for k ~ n1/2

n' 2kk'. C2n ,k
, . (n +k)!

(2n + 1)(2n +k + 1)(2n + k + 2)(2n +k + 3) ... (2n +2k)
2k(n + l)n + 2) ... (n +k)(2n +k + 1)

X {I +O(2- n
)} = 1 + 0 (~2),

and therefore

m-I k

n! . 1= {;o 2~k! (1 + O(eIn)),

l 1 1 00 e 1a I
k

~
= exp(aI2) + O(1) (I a1/2)m -, e1ul /2 +- L k,

m. n k=O 2 k.

= exp(a/2) +Ou(1/n).

Thus, we obtained

4. EXAMPLE. f(x) = x m with m> n.
Similarly to (7.1), we have E n_ixn+2k ) = En_l(Xn+2k). Now X n+2k is in

the Markoff-class M n' and therefore

E (Xn+2k ) = (n +2k)! fl V (t). t2k = 21-n • C
n-l (2k)! -I n n,k'

Using (7.4), we obtain the order of En_I(Xn+2k), and using (7.5) we get
En_l(Xn+2k) with an exponentially small relative error, if 2k ~ n (see [7) and
[8) for the case of L 00-approximation). Using Theorem 6 one could obtain
En_I(Xn+2k) up to a relative error of the form O(l/n) for all k.

5. EXAMPLE. f(x)=(x-t)~-I/(n-l)!for fixed tEl.
We have (by Theorem 2 or by Peano's theorem) En-1(f) = Vn(t). Thus

the order of En _ 1(f) is given by Vn(t).
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