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1. INTRODUCTION

For any integer n >0 and any real f€ L'(I) with I=[—1, 1], let E,(f)
denote the error of the best L ,-approximation to f with polynomials of degree
not exceeding n (let P, denote the set of all such polynomials). We are
interested in upper and lower estimates of E,_,(f) and particularly in its
asymptotic behaviour as n tends to infinity. In the literature we found,
besides the special function f(x)= x", only two classes of functions where
these questions have been answered to some extent: Estimates and
asymptotic behaviour are given in [2,p.318-319] and in [4,p. 42] for
functions like f (x) = (@ — x)* with real s and real @ > 1. On the other hand,
the order of E,_,(f) is determined by the inequality (see [9, p. 84])

m, =inf | f V()| 2" 'L E,_ (/) <sup | f P (x) =M,

up to a factor M,/m,. Under additional assumptions on /'™ there exist
asymptotic results for the corresponding L -error |6, p. 79].

According to a theorem of Markoff (see Theorem 2 below), for a wide
class of functions (including every f with monotonic (n — 1)th derivative),
the error E,_,(f) is given by

E)=|[ SO0 . (11)
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where sg,(¢) is a well-known unimodular function (see (2.2) below). The
weakness of (1.1) stems from the fact that the smallness of the right-hand
side of (1.1) depends on cancellation. If £ is continuous, then partial
integration or Peano’s therem [3, p. 69] yields

[ ros@a=cor-| vormoa (12)

with
1

V,,(t)=—(n__—1)!f1 (t—w)"' - sg,(u)du. (1.3)

The function V,(¢) turns out to be positive on (—1, 1) (Theorem 1), and
therefore (1.1) and (1.2) imply for every f with nonnegative £ that

E (=] V0r°0a, (14)

with a nonnegative integrand. If ™ changes sign we still have the general
inequality (see Theorem 2)

[ orowd |<E 0] V0lrmold

In order to answer the above-posed questions with the aid of (1.4), we
approximate V,(¢) by simpler functions. Thus, we show (see Theorem 5) that
V,(¢) is of the same magnitude as

P0-—(Z5) 1+ Var =) (1.5)
] ( 2 ) { ’ )
and that V,(t) deviates from (see (2.5) for the definition of y,)
22 (n+1) 1 — 2\
*(1) = . .
Vn (t) - 7 n! yn ( 2 ) (1‘6)

by less than (n+ 1)8'~"/n!. As application we will handle functions like
e%*, e®*’ cos wx, x"*™, and (x — )"~ . Typical results are

2" '.nlE,_(e)=1+1/4n+0(n"* for n->

and

1-2n

2
Eyp_o(e")=E,, ()= - Ve - {1+0(m™")} for n- .
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Many of our results depend on a representation of V,(¢) by means of an
integral (Theorem 4). We found it remarkable that this integral yields an
explicit representation of certain trigonometric sums. Thus, we obtain, for
example,

in/2)

(=1 (cos i )”

1= "t/ n+1
2"+ 1) 0 (1—u’)"du
- 7 [‘—l 1 +(_1)n u2(n+1)

~2'" i (L)

2. NOTATIONS

In the sequel n resp. k denotes a natural number resp. integer. The
Chebysheff-polynomial of the second kind

U,(x)=sin(n + 1) &/sin O; x=cos O

has the » zeros x,, x,,..., X,,, where

nk
= = - . 2.1
X =Xpx cosn+l, for kez 2.1
Let
58,(t) = (—=1)" sgn U, (1), (2.2)
where
sgny=y/lyl if y#0
=0 if y=0;
then
sg.(—t)=(—1)"sg,(t)) and  sg,(-1)=1, (2.3)
and (see |9, p. 72; 2, p. 94])
1
f t'sg, () dt =0 for 0<k<n
-1
=(=1)".2t"" for k=n. (2.9)
For a >0 let
1
0 1y gy — _Vale+)
y,,_j_l(l W) du=B(1/2a+ 1) =5 (2.5)
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We deduce

Yo=2; W= n/2; @+ 1)VeYer1p=7 (2.6)

Equation (2.5) and Stirling’s formula [1, p.257; #6.1.39] imply

a'?y,—n'? as a - o0, and therefore

4/3a'?y, Ln'? for ax1, 2.7

since a'/?y, increases for a > 1.
We write x, = max{x, 0} and define the function

Fo)= > (=1)*exp(~n’k*/c) for ¢>0. (2.8)
k=—
This representation of F(o) is advantageous for o< 1 and yields, for
example, F(0)>1—2exp(—n’/o) >} for o < 1. Using properties of the
theta-function [10, p. 476] we obtain

F(a) - /o-/n e“"/“ . Z e—k(k+l)0 > /o,/nefa/at. (2.9)

k=—a0

For any f€ L,(I) let p,= p; ,_, denote the polynomial of P,_, that inter-
polates f at the zeros of U,(x). M, stands for the set of all f€ L'(J) for
which (f— p,) sg, does not change sign on 1, and F, (resp. F,') denotes the
set of all f€ L'(I) that are representable in the form

X (x _ t)n— 1
-1 (n—=1)
where g(¢) is of bounded variation (resp. increasing) on I and p(-)€ P, _,.

Note that f€ F; means that £ " increases (" » being absolutely
continuous), and we have

FG)=p()+ | dg (1)

FicM, (2.10)

This is trivial if n= 1. Let therefore n > 2. We may suppose p(x) =0 and
g(—1)=0. We may further suppose that g(r) is strictly increasing (the
general case then follows by approximating g(#) by g(¢t) + (¢ — 1)). Then
f—Dp, has exactly n roots, each of which is simple. Otherwise

ji g(t)dt — (a,x + b) =" (x) —P}"_z)(x)

would have at least three roots y, <y, <y;. This would imply 1/(y,—»,)
H.’ g(t)dt=1/(y,—y,) ]} g(t) dt, and thus g(t) = constant on (y,, ;) since
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g(¢) increases. We remark that (f—p,)sgn U, >0 for f€ F,. This follows
from the special example f(x) = x" by means of a homotopy argument.

3. SoME ELEMENTARY RESULTS
From (1.3) we deduce for r € I

420! =_“Tl:1_)! ' f (0 — )" sg,(u) du

(n—
for 0<k<n,
=sg,() for k=n and t+#Xx,, X550 X5 (3.1)

and this yields immediately statements about the zeros of V,(¢) and its
derivatives.

THEOREM 1 (Properties of the Peano-kernel V,(r)).

(a) V,(t) is an even function.
(b) YOk <n:V¥(t) has exactly k zeros on (—1,1).
(c) V,(@) is positive on (—1, 1) and strictly increasing on [—1,0].

Proof. (a) This follows from (1.3), since (2.3) and (2.4) imply

[t gy du= [ (240" sg,(~0) o
=~ [ oy g0 a

=Jl (t—v)"~ ' sg,(v) dv.

(b) Equation (3.1) and (a) imply that +1 and —1 are zeros of V,(¢) of
order (n — 1). Using Rolle’s theorem k times, we deduce that V¥ (¢) has at
least k zeros on (—1, 1). Suppose now that V"*(¢) has more than k zeros on
(=1, 1). Then (again by Rolle’s theorem) V"~V (¢) possesses at least n zeros
on (—1,1). But ¥"~P(¢) is a piecewise linear function, that vanishes for
t=4+1 and which consists of (n+ 1) linear (and nonconstant) pieces;
therefore V{"~"(¢) has at most (n — 1) zeros on (—1, 1).

(c) By (2.3) we have sg,(t)=1 for ¢ < x,, and therefore (using (1.3))
V() >0 for —1 <t < x,. Because of (b) we deduce V,(f) >0 on (-1, 1).
Since V,(¢) is an even function, the zero of V(¢) is x = 0. Since V,(—1)=0
and V,(t) > 0 on (—1, 1) we have V/(¢) > 0 on (-1, 0).
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Next we state the above-cited result of Markoff and some consequences of
it.
THEOREM 2 (Representations and estimates of E, _,(f)).

@ E, (2L SO0 dt) if fEL'D).

(b) (Markoff) E,_\(f)=Il/—plli= L1 S () sgu() dt) F FE M,
© E,_(N=IILV,()dg®) f fEM,NF,.

@ L V.0 dg®I<E, ()| V(O |dg®) FfEF,.

Proof. (a) E,.(N)=If—p*|i2|fL, (f—p*)sg.|=1|[1.fsg,| Wwith
p* € P,_, and the use of (2.4).

(b) See [2, p. 91).
(c) If ¢(z) is integrable and g(f) is of bounded variation on I, then

jil dx o(x) L (x — )"~ dg(t) :ﬁl dg(t) Ll (x—1""p(x)dx, (3.2)
and therefore (use (2.13), (2.4) and (1.3))

Jil 5g,(0) f(x) dx = (—1)" Jl

V.()dg(ty for fEF, (33)

This and (b) imply the proposition.

(d) The left inequality is an immediate consequence of (a)
and (3.3). Let f(x)=p(x)+ %, ((x—0O)""")/(n—1)!)dg(t). Put h(x)=
[* ((x ="/ (n—1)!)|dg(t)l. Then h + fE€ F; < M,, and therefore

{(h—pun) = (f=Psn)) - 580 U, 2 0.
We deduce
) = praC)l L A(x) — Py o(x)] for —1<x<T,
and therefore
Ev (D)<=l <Ih =l =Eu ()= | V014500,
We continue with an alternative representation of V(7).

PrOPOSITION 1. Ifn>1and —1 <t |, then

V=1 +2 Y (D =5
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Proof. By (2.2) and (2.3) we have

sg W)= +u)S+2 Y (D —x)"  for u#xy,% X,
k=1
and therefore (1.3) implies

t n t
(n—1)! V"(t)=j ((—u)y''dut+2 Y (-1)kj (¢ —u)""" du.
—1 k=1 X
xp<t
Remark. Since (t — x,)" decreases in k, we have
nV,<{1 =" for -1t 3.4)

We conclude with some lower estimates of V,(¢).

THEOREM 3 (Quantitative lower estimates of V,(¢))

@ V0> (1"2)"-i,

n!

b) V,()» LD (l ;’2 )"H/2 i:% V@),

\/5 n!

© V03570

Proof. (a) The nth Legendre-polynomial is given by [1, p.334;
#8.6.18] P, (x)=1/(2"n!) (d")/(dx")(x* —1)". Using |P,(x)|<1 for
—-1<x< 1, and [', x™P,(x) dx =0 for 0 < m < n, we obtain for any f with
nonnegative continuous f:

[ orewd=£ =] ir-pi>|[ ¢-p)-P,
0y

-n!

- [ re|=] row- dx.

Since /™ is an arbitrary nonnegative continuous function, the proposition
follows.

(b) We have [1,p. 785; #22.11.4]
3 (n+ 1) Va ()" a"
VA=) U&=y ae )

n+1)(-1)"y, d" n
= ( n')2(n+l) dxn ( xz) +l/2‘

640/37/3-6
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Using [', /1 =x7 U,(x) x" dx =0 for m < n 1, p. 774; #22.2.5], and
U, (x) /1 —x*=|sin(n + 1) 0| < 1 for —1<x<1,

we deduce for any f with nonnegative continuous f™:
1 1
[ voreoas \ [ f@) U@ VT= 2 ax
-1 -1

(n + 1) ‘})nJ‘ (1 2)n+1/2f(n)(x) dx.

- nl on+1

(c) Add the inequalities (a) and (b) and use (2.9).

4. AN INTEGRAL REPRESENTATION OF V,(f)

THEOREM 4. For —1 <t <1 and n €N we have

2/2(n+1) 1=\ (1~ u®)" du
Vi ="Y=0 ( )

2 .f—ll—(H-iu /T )+

Proof. Let x, <t < x,,,. Proposition 1 yields

nV,@)=0—x,)"+2 ZI (=D —x)"

=(m+1)-2""" 3 Resglz), 4.1)

Rez<t
since the rational function

(z =2zt +1)" 2"z +1/z—-2)"
F( z) = IPSICEY 1 — z2n+ D

has poles exactly at the 2(n+ 1)th roots of unity and since (put

z, = — exp(kmni/(n + 1)) the corresponding residues are given by
zn. 2n(x - t)n ~z"“2"‘1(x . t)n
R =k k =__%k k
CSF(Zk) —2(I1+ l)zin+l n+ 1
(=Df 2" e —xy)" _
= o b = Resp(Z))-

Let I',, I, and T, be paths that join ¢ — i \/T— 2 with ¢ + i \/1 — %, where
I', is a straightline, I'", lies outside the unitcicle, —1 is positively encircled

once by Iy —TI,, and I, is the image of —I", under the mapping z +— 1/z.
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Since F(1/z) = —z%F(z), the substitution z = 1/u implies

j F(z)dz= j F(z) dz, (4.2)

_FZ

and therefore (4.1), the residue theorem, (4.2), and Cauchy’s theorem yield

(n+1)27" (n+1)2'"

! = — F dz = ——"7—
V=" | Fe)ds o

Jr. Fz)dz (4.3)

This implies the desired result by putting z =z(u)=1¢+iu+/1 —t°. By
continuity we get the desired result for 1 € {x, |0 < k < n} too.

Since (z?—2zt+ 1) vanishes at the endpoints of I, we obtain by
differentiating (4.3) with respect to ¢ for 0 < &k < n:

(n— k) ViP()

_ A DED ik @2z )R
- ni r, 1 — 2+ D

22 NEDT Ay ey VI-)

n 2 1 L= {t+iur/1— 22D

dz

For t =0 and k = 2m < n we obtain, by comparing with Theorem 3:

[n/2] ne2m
N (=1)'- cos In ;
1=—{n/2] n+ 1.
_(_l)m.(n+1)22m+1~n 1 (l_uZ)n—Zm uzmdu
- n 1 1+(_1)nu2(n+|)

and especially (for m =0) (1.7).
We remark that Gould [5] proved

[n/2] ]

>3 (=1 (cos ni i )Hl =n+1)2°"

1= —[n/2]

an identity that is equivalent to [°, V (1) dt=2"".

For —-1<t<1 ad O0<¢ <=z the partial sums of
220 {t+iy/T— 1 cos }Y* 1 are dominated by 2/((1 — #*) sin® ). Using
in Theorem 4 the substitution u = cos ¢, we obtain
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2 n+ 1 1— 2)n+l/2 e sinw 2n+1
V()—( ) ( : (2) ——dp
n: o 1—(—+/t? —1cosp)"*
2(n+1) 2\n+1/2

oo n .
) Z J (sin )"+ {t + /17— 1 cos @} Y"1 do,
=070

and therefore [1, p. 784; #22.10.10, and p.777; #22.4.2] the following
expansion in Gegenbauer polynomials.

PROPOSITION 2.

2n+2 (l_tZ)n+l/2 @ C(zj(t.:—)l)(t)

. (2n+ 1 ) n! Z o CORV LD

2j(n+
n

Va®)=

holds for —1 <t <1 and n€N.

5. THE MAGNITUDE OF V,(t)
Put (n2>1;-1<t<1)
Vi@ =Vx® - {1+ R0} (5.1)

with

R (1 —uz)" {t+iu/T— 2P0+ gy
n(1)= J —{t+iu /l—tz}z(”“) ’

and therefore

1 AY 2 2 _ 2y n+1
yn'|Rn(t)|<J (1—u)" {t" +u’(1 —)}"  du

1— {2+ u*(1 —2)}"+! (5.2)

Lemma 1. (n>1;—-1<t< 1)
(@ [R,MI<1/n(l—1%),
(b) 7, R84 =)}, for £<3
L2270 /(1 -2 ), Jor >3,
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Proof. (a) Since 0<b< 1 implies 1 —5"' > (n+ 1)(1 —b)b", we
deduce from (5.2):

1 ! n—1 2 2 2
7a | R0l QWJ_I (1 =)' +u*(1 — %)} du

< 1 _ 2n+1

ST A=) T s DA~
(b) Using

1—u? 1 —u? 1

<
{2+ u®(A-2)" " S 1= {2 +u’(1—tD)) 11

we obtain from (5.2):

PIROIS T [ 0=+l =D de (53)

This gives the desired result by estimating the integrand in (5.3) by its
maximal value; this integrand is maximal for 1 —u? = 1/(2(1 — £?)) if 2 <1,
and for u=0if t* > 1.

THEOREM 5. (n>1;—1<t< 1)
(@) 3V, (0<V (<37,

2 n+1 _

) 11,0 vy <—yi-f 8D g
with

o(t) = 1 for £'<

=221 —9)/2,  for *>

Proof. (a) The left inequality was stated in Theorem 3(c). Let

t* <1—1/n and thus n > 2. Then (5.1), Lemma la, (1.5), (1.6), and (2.7)

yield (observe VX(£)/V,(£) \in )V, (1) <2V¥({) <3V, (t). Let now

t*>1—1/n, and thus n(1 —[¢])/(1 +|¢e]) < (1 +|¢])"? < 1. Using (3.4) we
obtain

o= ri U (15 (2o

1—-1¢
1+¢|

1— |t
I+ ¢

<V (1 + ) < V(1) exp (n ) < 37,00

(b) This follows from (5.1), (1.6) and Lemma 1(b).

640/37/3-7
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6. THE ASYMPTOTIC BEHAVIOUR OF V(t)

In this section we will determine a rather simple function *V (f) with
V() =*V,(t) - {1+ 0(1/n)}, where O(-) is independent of n and ¢. We start
with a simple consequence of Lemma 1 (use (2.7)).

LEMMA 2. V()= V*(1) - {1+ R (1)} with

3logn
2n

3
IR, ()] <7 for [H<1— and n> 2.

Remark. Similarly one obtains |R,(f)| < c,-n~* for |[¢]<1—(k+1)X
log n/n, and even R,(t)=0(/ne V") for |t|<1—1/\/n. Next we will
show that (1 —|¢])"/n! is a good approximation for V,(f) in the
neighbourhood of 1.

LEMMA 3.
0= (1 )
with

1
[r"(t)|<—n— Jor 1>]t|>1 and n> 2.

" (n+1)logn

Proof. Since V,(¢f) is an even function, we may suppose <0.
(1 —cos x) - x~ 2 decreases on [0, z/2], and therefore

2/7Y <(1—cosx)x 23 for |x|<n/2. (6.1)

Proposition 1 represents V,(¢) by an alternating series and implies

I (O] = n! V. (t) 1 ’<2 (t—xl

(I—[epr 1+¢

and by (6.1) we have (for x;, <t -1+ 1/((n+ 1)log n))

n
) for —1<t<0,
+

t—x\" I +x,\" 1+x,
=(1- < -
(1+t) ( 1+t>\exp "+t

—4n 1
< — =
Sy P+ | S h?

Remark. Similarly one obtains r,()<n* for |t|>1-1/
(k(n + 1) logn) and n > 2 and even |r(f) < e V" for |t| >
1= (n+ 1)
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THEOREM 6. For n>n, and |t| < 1 we have

V.(6)=*V,() - {1+ 0(1/n))

with
31
V0=V i< -,
_ =gy 1
- il (n+1)logn’
=\ 1 oo/ G(o)
_< 3 ) o §F( )+ T else,
where
o=+ 1)(1-1?),
and

36? — 80 o’ a’
G(o) = (T—)F(o) + 2 F (@)= F(0),
Proof. 1t remains the case when

t€[—l+ 3logn],

(n+ Dlogn>~ o
which implies (for n > 3)

logn 1

11— <L —
n+1 > (n+1)logn

(6.2)

We write V,(t) = 1/(n!)((1 — #*)/2)" * F,(0) with (according to Proposition 1)

RO (o) 2 2 cor (2Rs) 6

t2
We have to handle terms of the form
2(t—x,)
S = (1 —p)"
( =7 ) =(1-n)
with

2(1 —cosw 2—z—2+/1—2z
n=n= z k)_ z ’
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where
nk

“ht 1l

o
z= =1-¢ and w,

Because of (6.2) we may restrict our considerations to 1/log n <o < 3 logn.

Furthermore, we suppose n > n,. By (6.1) we have
0<z<4i, and  7n,>(Wwi/z—1z)/2.
Put / := [2 \/o log n] + 1. We have by (6.4)
x,_, <t and w,/z 2> T,
and therefore (6.4) implies z - #, > w}/3, and
(1 —n,)} <exp(—nn;) < exp(—nwj/(3z)) <n™*.
Now we consider 0 < k < /. We have

wi/z<i and  |n|<max(wi/z,z/2) <1,

and
Ne=wi/z —2/4 — 2°/8 + O(wi/z + 2°).
We deduce
z _ 3 1 1 _
log(1—1n,)= g—&—— wez ' + 13—2z2 +—4—w,2(—7w2z 2

+0(z* + wiz™?),

and (write n log(l —n,))=(n+ 1)log(--+) — nlog(---))

36> -8 ,,(1 1
Ep) +k”(7+?>

1
1— n__ ,0/4 —kznz/o<1
(1= ny = ette=sre (14—

l 4
o (5))

-1

e 7t g(l —19)" +2 k; D A=) g

ki
Ry

and

1 30— 80
— -1 ke—kznz/a <l +
U;d =D (n+1) 32
1 1 k47t4 &, 272
2.2 (4 1 —2 4 —k2n2a
+ k' (4+0) 557 >+0(n log n)k;we

(6.4)

(6.5)
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1
n+1

_ Fo)+ (30 — 80

) F©
© enrra | (0 Knt kit
+ D (=Dkemk <(T+U)—2_T‘2'>

k=-o0 ag

+ O(log’n/n?),
since Y2 e K2 = O(1 + /o) and (for example)

©

Z (__ 1 )kekznz/o

~ 22 — 2] _
<e ln/o<e 4nlogn<n 2'

Using (6.5) and

F'(O’)“ Z ( l)kkz 2 —2 —kn?o

k=—-00

and

©
(UZF'(O'))'= Z (—l)k k4n4o.—2e—klrr2/a

k=00
we obtain
F (o) = e°’*(F(0) + G(0)/(n + 1) + O(n"? log® n)).
This implies the assertion, since we have F(g)>n"** by (2.9), and

G(o) = O(log* n) by ¢*F®(g)=0(1) for k=1,2 (note that 6F'(c) and
(6*F'(0))’ are alternating series with bounded terms).

Remark. From (2.8) and (2.9) one may obtain
F'(0)=F(@)-0O(1+0¢7"), and F"(0)=F(0)-O0(1+c7 7).
This yields G(0) = F(o) - O(1 + ¢?), and thus
(F@)+ 233 ) (1 + 01/ = Flo) - 1 + O((1 + /)

=F(0) - (1 + O(n~" log? n)).

7. EXAMPLES

If f is continuous, then, according to a theorem of Jackson [9, p. 69], the
minimizing polynomial is uniquely determined. Therefore, the minimizing
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polynomial of a continuous function f'is even if f'is even, and odd if fis odd.
This result and [2,p. 94] E,_,(x")=2'"" imply

E, ,(x")=E, ,(x")=2'"" (7.1)

LEMMA 4. g(x*)EM,, and xg(x*) EM,, ., if g™ (x) #0 on [0, 1).

Proof. Put f(x)=g(x*). We shall show that f—p,,,_, has exactly the
ZETOS Xy,13 X345 ***>X2,.2n> and changes sign at these points. Note that
Xyn.x 7 0. Since fis even, p;,,_, is even too. If

n—1

f_pf,Zn—l =g(x2)— Z akakzg(xz)_pn_](xz)
k=0

had another zero or a multiple zero on (-1, 1), then g(x) — p,_,(u) would
have at least (n + 1) zeros on [0, 1). This is impossible by Rolle’s theorem.
The function xg(x?) may be handled similarly.

Next we collect some identities and inequalities.

LEMMA 5 (k denotes a nonnegative integer.)

1
(a) J V,(6)dt=2"""/n.
-1
' e @R+ 1)
b V* . g2k =2l n—2k .
®) J_l ) kli(n+ k + 1)!
Lo (2k)!
2k gy o -2k
© LV"(’) Cdt=n 2 kT 1)
X vn+l 4 1 .
Vn Yntks12
1 1—-n 1
@ [ no-roracs 1t
-1

n k+1°

Proof. (a) Apply Theorem 2(c) to the function f(x) = x" and use (7.1).
(b) Using (1.6), (2.5) and (for a, §>0)

1 )_ Ta+1)IB+3)

jil(l—tZ)atzﬂdt=B<a+l,ﬂ+-—é— S TTI@ip+d (7.2)
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we obtain
-n 3 1
[ v rea= 27t IO+ DI+ 3T+ )
i n-mIn+3)-In+k+2)

_ 2+ DIG)TG) & (Y1
T a(n+k+ 1) U,( 2 )

(c) This is proven similarly to (b).
(d) This follows from Theorem 5(b) and from

! 3 1\ I rk+4%)
"2t di=B (= k+—)|=—2 T2
J_l\/l 7k dr B(z,k+2) )

For n> 1 and k >0 we put

2" (4 2k) .
=_— < tRdt,
cn,k (2k)' J’—l Vn(t) t L

We have ¢, =1 by Lemma 5. Theorem 5, Lemma 5, and (2.7) imply

(n+2k)  _, [n+2k
Cnde S 4"k!(n+k)!—8'4 ( ) (7.3)

k
and
1 2k 1
___(n+ )n+ +\/E<4"-c,,k<8<n+2k) (n+l+\/E). (1.4)
8 k n+1+k k n+k+1

Furthermore, we have by Lemma 5 (e =¢, , with |¢|< 1)

o o (ntDE+2)! ¢ 4T (n+ k4 1)
"»k-4k.k!(n+k+l)!3 (k + 1)(2k)! n! g

Since (2k!(n + k + 1)1)/((k + 1)(2k)!) increases for k < n and decreases for

k > n, we obtain

_ (n+1)(n+ 2k)!
T AR kN4 k4 1)!

{1+4e.280km) (1.5)

THEOREM 7. (a) Iff€ C"**(I), then
2"V E, () =17 0) + O(1/n){ £ V(0] + 4, },
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where

dy1 = sup |f "+ D) (1 - )"

() If fEM, possesses a Maclaurin expansin f(z)=3Y ,a,z*,
which is convergent for |z| < 1, then

YA En—l(f)= Z Crnk@ny2k

k=0

Proof. (a) We have f™@)="(0)+ "V (0) + A(¢) and

[ rotmara=[ v | [ a-0r 0w | a

<f V(o) - ’f £ 2 (w)| du dt,

1 ¢
<d,, -L V,,(t).z.fo(l —u?)™"" du,

and

Pt [ (=) du
RAOHEINCETD

n J

< 2’ 1(l—uz)"'“flt(l—tz)”- 31 +V(n+ 1)(1—12)Z dt du

_ 2°" 1 n+1
o 2(n—+1)'}'1+n/2+m'y(n+3)/2§
2l—n

= 0(1/n)

Using Theorem 2 and the triangle-inequality, and Lemma 5(a), we obtain

Ev D> | [ V00 + g O de | = [ v 0lh0rde

>t lirmo)-o (%) g
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On the other hand, we have (using (7.1) and Theorem 2(d))

E,_(N<E,_, (%(?)ti)“gn-l (ﬂ—%%gl))t';l)

f(n)(o)tn f(n+l)(0) nil
-1 (f(t)— nt (n+ 1) ! )’

21 ! n n+1
A ’(0)|+( LA ’(0)|+j V() | ()| dt

=207y + 0 /m S P O) + )

6) B, (=] Vo0

e k)
-y (nt k! K
[f:d() n+k k! J—l Vn(t)t dt’

e8]

—"l—n

=2 Z Ay 2Cn
i=o

In general we need £ () # 0 on I in order to apply Theorem 7(b). If £ (¢)
changes sign on I, one often may use the following theorem (put d, ,=
sup, |f*R@) . (1 —¢*)* for n > 1 and k > 0).
THEOREM 8 (n>1;k>1;0<0,<1;7,,>0)
(@) IffeC™*) and f™ () + y, £t* > 0 for |t| < 8,, then

270 nlE,_ ()= Z C"m(n+2m)!f(n+2’")(0)
+ 0(1)(1 - n)”/4 : dn.O + Ok(n_k)(yn.k + dn,k)'

(b) If f possesses a Maclaurin expansion,
e8]
f@)= 2] a,z",
m=0
which is convergent for |z| < 1, and if £ (t) > 0 for |t| < J,, then

«©

+0(1)(1 = 82)* - d, o/n.

2"7'E, ()=

n mQn+2m

Remark. The first error term in (a) stems from the fact that we do not
know the sign of £ (¢) for |¢| > ,. The second error term comes in since we
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replace the assumption £ (¢) >0 by £ (£) + ¥, ,+* >0 for |t|<J,. The
last error term finally is a consequence of the truncation of the Taylor-series
expansion of £ (¢). The last two error terms may be written as

k) Tk + 1)
O(n") (—FkT'yn,k “7(—275—2—% k)

Proof (of Theorem 8). (a) We have
IS PONS @ + 29,08, for [t <
Kd, - (1=1)""2,  else. (7.6)
By Theorem 2(d), (7.6) and Theorem 5, and (7.4) we obtain

0<E, (=] Vo< Vo llrl=r)

1 1 N
Snk J 1 v )-kdr+d,, L 7)1 — )" dt

n

l0617*) - e s+ 0L =8

21 n
n!
since (by (1.5), (2.5) and (2.7))

l A~
2t [ P ()1 1)t
5

1
V[ A=<y =8)" -y, <A =8)"™ (1)

Using Mclaurin’s expansion for /" (¢) we get
k-1

Jil Vn(t)f(n’(t) dr—2'-" mZO (n — 2m)'f(n+2m)(0) l
U 14 (t)J’ (zz—ku)Zl)' £ () dy dy ’,

< (2k——l)‘J' 7 (t) £ 'j (1 —u?)~" du dt,

d,

<a 1)'J V(1) k(1 — £2) =" b,
du i 27, 1y
STk—1) 2F("*’z)" ’

where the last inequality follows by (1.5), (7.2), (2.5), and (2.7).
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(b) By Theorem 2(d) we have

1 LM
E, (<] V= f_a O AT

11> 8,

1
o[ vt

16158,

and therefore (the last inequality follows from (7.7))

0<E, ,(f) - j A AT

1138,

1—-n

1
% 2
<dn,0 s Vn(t)(l _t2)—n/2 dt<d"‘o ~ (1 —63,)"/4.

Remark. 1If I=|--1,1] is replaced by [a, b], then Theorem 7(a) reads as
follows

E, (f:]a,b])

=% (@L/2)" - (S ") + O /mIL | £+ V() + LD, ,})»

where
c=(a+b)/2; L=(b—a)2,

and

D,y =5uP,¢yep £ P W) - (V (b — u)(u —a)/L)".

1. EXAMPLE. f(x)=e“*. Theorem 7(a) yields
2" nlE,_,(f)=lal" - {1 + O (1/m)}.

Using Theorem 7(b), we obtain

n - n, a
n l(.f)_‘ ' 20( ;_21)“

and Theorem 8 implies, for example,
nt 2"t En—l(.f)

=|a|" .

a2 4

LV TRy S §T ey T

+0,(n~ ).
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Similarly, we might treat the function f(x) = [¢ e*" dg(¢) with a monotonic
function g, and obtain (for example)

2 n B, (/)= () {1+ 01/}

2. EXAMPLE. f(x)= cos wx with real w.
Since f is an even function we have E,, ,(f)=E,,_,(f). For |w|< n/2
we deduce from Theorem 7(b)

(_wZ)k

22n IE 2n
2n— l(f) w Z c2nk (2n‘+‘2k)'

(7.8)

and from Theorem 8(a) (with k=2, d,,=1, ,,,=0, d,,, =w™*%
observe (7.5) and w* = O(w?)),

227-1(2n)!

o E,i (f)=1~w'n""/8+ O(w?/n?). (7.9)

For |w| > n/2 we use Theorem 8(b) (with d,, = 7/(2w), and d,, , = w*") or
Theorem 8(a) (with k =2, &,, =7/(2w), Y3,.4 =0, dy, ,=w*"**) and this
leads to an extra error term of the form (put ¢=1- (7/(2w))?)
((@™)/(2n)!) - O(¢"™*) in (7.8), and O(g"™* + w*n~2) in (7.9).

We remark that (7.8) does not hold true for all w, since, for example, for
n =1 the value of the right hand side of (7.8) is

1 1
w?. J V() cos wt dt = 2w2f (1 —t)coswtdt=2(1—cos w),
-1 0
and especially 0 if w = 27.

3. EXAMPLE. f(x)= e with a #0.
According to Lemma 4 this function is in the Markoff-class M,,. We
apply Theorem 7(b) and obtain (let m ~ n'/?)

w© ak

2n— - a" _
+27 By (f)=a" Y ey n + k)

- f ol =a"{I 4 0.
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Since ((2n + 2k)1)/(4%(2n + k)! (n + k)!) decreases in &, (7.3) implies (c,, )/

((n + k)!) < 8/(k!n!), and therefore n! - |IT| < 8 - 32 . (ja|*)/(k!) = 0,(1/n)
From (7.5) we deduce for k < n'/?

12kt . Sanik
n! 2k -——(n Ay

_@neD)@n+k+ D+ k+2)2n 4 k+3) - (20 + 2k)
B X+ Dn+2) - (n+)2n+k+1)

x{1+0(2'")}=1+0(’;—2),

and therefore

m—1 k

nl . I= kgo i (1 + 0(k*/n)),

=exp(a/2) + O(1)

1
(Ial/z)m Welal/z +

=exp(a/2) + 0,(1/n).

Thus, we obtained

Esyesf) = Exnei(F) = 7 (al/4)" {ex0(a/2) + O(1/n).

4, EXAMPLE. f(x)=x"™ with m > n.

Similarly to (7.1), we have E,_,(x"**)=E, ,(x"*?*). Now x"** is in
the Markoff-class M,, and therefore

+ 2% .
E n+2ky _ (I’l L g2k _9l—n .
n—l(x ) (2k)! J_l Vn(t) t 2 Cn.k

Using (7.4), we obtain the order of E,_,(x"*2*), and using (7.5) we get

E,_,(x"**) with an exponentially small relative error, if 2k < n (see [7] and
[8] for the case of L>®-approximation). Using Theorem 6 one could obtain
E,_,(x"***) up to a relative error of the form O(1/n) for all k.

5. EXAMPLE. f(x)=(x—£)"""/(n— 1)! for fixed t € L.

We have (by Theorem 2 or by Peano’s theorem) E,_,(f) = V(). Thus
the order of E,_,(f) is given by V,(¢).
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