Best L1-Approximation by Polynomials

H. Fiedler
Abteilung für Mathematik der Universität, Oberer Eselsberg, D-7900 Ulm, West Germany

AND

W. B. Jurkat*
Department of Mathematics, Syracuse University, Syracuse, N. Y. 13210, U.S.A.

Communicated by G. G. Lorentz
Received April 6, 1982

1. Introduction

For any integer $n \geqslant 0$ and any real $f \in L^{1}(I)$ with $I=[-1,1]$, let $E_{n}(f)$ denote the error of the best L_{1}-approximation to f with polynomials of degree not exceeding n (let P_{n} denote the set of all such polynomials). We are interested in upper and lower estimates of $E_{n-1}(f)$ and particularly in its asymptotic behaviour as n tends to infinity. In the literature we found, besides the special function $f(x)=x^{n}$, only two classes of functions where these questions have been answered to some extent: Estimates and asymptotic behaviour are given in [2, p. 318-319] and in [4, p. 42] for functions like $f(x)=(a-x)^{s}$ with real s and real $a>1$. On the other hand, the order of $E_{n-1}(f)$ is determined by the inequality (see [9, p. 84])

$$
m_{n}=\inf \left|f^{(n)}(x)\right| \leqslant 2^{n-1} n!E_{n-1}(f) \leqslant \sup \left|f^{(n)}(x)\right|=M_{n}
$$

up to a factor M_{n} / m_{n}. Under additional assumptions on $f^{(n)}$ there exist asymptotic results for the corresponding L_{∞}-error [6, p. 79].

According to a theorem of Markoff (see Theorem 2 below), for a wide class of functions (including every f with monotonic ($n-1$)th derivative), the error $E_{n-1}(f)$ is given by

$$
\begin{equation*}
E_{n-1}(f)=\left|\int_{-1}^{1} f(t) s g_{n}(t) d t\right| \tag{1.1}
\end{equation*}
$$

[^0]where $s g_{n}(t)$ is a well-known unimodular function (see (2.2) below). The weakness of (1.1) stems from the fact that the smallness of the right-hand side of (1.1) depends on cancellation. If $f^{(n)}$ is continuous, then partial integration or Peano's therem [3, p. 69] yields
\[

$$
\begin{equation*}
\int_{-1}^{1} f(t) s g_{n}(t) d t=(-1)^{n} \cdot \int_{-1}^{1} V_{n}(t) f^{(n)}(t) d t \tag{1.2}
\end{equation*}
$$

\]

with

$$
\begin{equation*}
V_{n}(t)=\frac{1}{(n-1)!} \int_{-1}^{t}(t-u)^{n-1} \cdot s g_{n}(u) d u \tag{1.3}
\end{equation*}
$$

The function $V_{n}(t)$ turns out to be positive on $(-1,1)$ (Theorem 1), and therefore (1.1) and (1.2) imply for every f with nonnegative $f^{(n)}$ that

$$
\begin{equation*}
E_{n-1}(f)=\int_{-1}^{1} V_{n}(t) f^{(n)}(t) d t \tag{1.4}
\end{equation*}
$$

with a nonnegative integrand. If $f^{(n)}$ changes sign we still have the general inequality (see Theorem 2)

$$
\left|\int_{-1}^{1} V_{n}(t) f^{(n)}(t) d t\right| \leqslant E_{n-1}(f) \leqslant \int_{-1}^{1} V_{n}(t)\left|f^{(n)}(t)\right| d t
$$

In order to answer the above-posed questions with the aid of (1.4), we approximate $V_{n}(t)$ by simpler functions. Thus, we show (see Theorem 5) that $V_{n}(t)$ is of the same magnitude as

$$
\begin{equation*}
\tilde{V}_{n}(t)=\frac{1}{n!}\left(\frac{1-t^{2}}{2}\right)^{n} \cdot\left\{1+\sqrt{(n+1)\left(1-t^{2}\right)}\right\} \tag{1.5}
\end{equation*}
$$

and that $V_{n}(t)$ deviates from (see (2.5) for the definition of γ_{n})

$$
\begin{equation*}
V_{n}^{*}(t)=\frac{2 \sqrt{2}}{\pi} \cdot \frac{(n+1)}{n!} \gamma_{n} \cdot\left(\frac{1-t^{2}}{2}\right)^{n+1 / 2} \tag{1.6}
\end{equation*}
$$

by less than $(n+1) 8^{1-n} / n$!. As application we will handle functions like $e^{a x}, e^{a x^{2}}, \cos \omega x, x^{n+m}$, and $(x-t)_{+}^{n-1}$. Typical results are

$$
2^{n-1} \cdot n!E_{n-1}\left(e^{x}\right)=1+1 / 4 n+O\left(n^{-2}\right) \quad \text { for } \quad n \rightarrow \infty
$$

and

$$
E_{2 n-2}\left(e^{x^{2}}\right)=E_{2 n-1}\left(e^{x^{2}}\right)=\frac{2^{1-2 n}}{n!} \sqrt{e} \cdot\left\{1+O\left(n^{-1}\right)\right\} \quad \text { for } \quad n \rightarrow \infty
$$

Many of our results depend on a representation of $V_{n}(t)$ by means of an integral (Theorem 4). We found it remarkable that this integral yields an explicit representation of certain trigonometric sums. Thus, we obtain, for example,

$$
\begin{align*}
& \sum_{l=-[n / 2]}^{[n / 2]}(-1)^{l}\left(\cos \frac{\pi l}{n+1}\right)^{n} \\
& \quad=\frac{2^{1-n}(n+1)}{\pi} \cdot \int_{-1}^{1} \frac{\left(1-u^{2}\right)^{n} d u}{1+(-1)^{n} u^{2(n+1)}} \sim 2^{1-n} \cdot \sqrt{n / \pi} \tag{1.7}
\end{align*}
$$

2. Notations

In the sequel n resp. k denotes a natural number resp. integer. The Chebysheff-polynomial of the second kind

$$
U_{n}(x)=\sin (n+1) \Theta / \sin \Theta ; \quad x=\cos \Theta
$$

has the n zeros $x_{1}, x_{2}, \ldots, x_{n}$, where

$$
\begin{equation*}
x_{k}=x_{n, k}=-\cos \frac{\pi k}{n+1}, \quad \text { for } \quad k \in \mathbb{Z} \tag{2.1}
\end{equation*}
$$

Let

$$
\begin{equation*}
s g_{n}(t)=(-1)^{n} \operatorname{sgn} U_{n}(t) \tag{2.2}
\end{equation*}
$$

where

$$
\begin{aligned}
\operatorname{sgn} y & =y /|y| & & \text { if } \quad y \neq 0 \\
& =0 & & \text { if } \quad y=0
\end{aligned}
$$

then

$$
\begin{equation*}
s g_{n}(-t)=(-1)^{n} s g_{n}(t), \quad \text { and } \quad s g_{n}(-1)=1 \tag{2.3}
\end{equation*}
$$

and (see [9, p. 72; 2, p. 94])

$$
\begin{align*}
\int_{-1}^{1} t^{k} s g_{n}(t) d t & =0 & & \text { for } 0 \leqslant k<n \\
& =(-1)^{n} \cdot 2^{1-n} & & \text { for } k=n \tag{2.4}
\end{align*}
$$

For $\alpha \geqslant 0$ let

$$
\begin{equation*}
\gamma_{\alpha}=\int_{-1}^{1}\left(1-u^{2}\right)^{\alpha} d u=B(1 / 2, \alpha+1)=\frac{\sqrt{\pi} \Gamma(\alpha+1)}{\Gamma(\alpha+3 / 2)} \tag{2.5}
\end{equation*}
$$

We deduce

$$
\begin{equation*}
\gamma_{0}=2 ; \quad \gamma_{1 / 2}=\pi / 2 ; \quad(\alpha+1) \gamma_{\alpha} \gamma_{\alpha+1 / 2}=\pi \tag{2.6}
\end{equation*}
$$

Equation (2.5) and Stirling's formula [1, p. 257; \#6.1.39] imply $\alpha^{1 / 2} \gamma_{\alpha} \rightarrow \pi^{1 / 2}$ as $\alpha \rightarrow \infty$, and therefore

$$
\begin{equation*}
4 / 3 \leqslant \alpha^{1 / 2} \gamma_{\alpha} \leqslant \pi^{1 / 2} \quad \text { for } \quad \alpha \geqslant 1 \tag{2.7}
\end{equation*}
$$

since $\alpha^{1 / 2} \gamma_{\alpha}$ increases for $\alpha \geqslant 1$.
We write $x_{+}=\max \{x, 0\}$ and define the function

$$
\begin{equation*}
F(\sigma)=\sum_{k=-\infty}^{\infty}(-1)^{k} \exp \left(-\pi^{2} k^{2} / \sigma\right) \quad \text { for } \quad \sigma>0 \tag{2.8}
\end{equation*}
$$

This representation of $F(\sigma)$ is advantageous for $\sigma \leqslant 1$ and yields, for example, $F(\sigma) \geqslant 1-2 \exp \left(-\pi^{2} / \sigma\right) \geqslant \frac{1}{2}$ for $\sigma \leqslant 1$. Using properties of the theta-function [10, p. 476] we obtain

$$
\begin{equation*}
F(\sigma)=\sqrt{\sigma / \pi} e^{-\sigma / 4} \cdot \sum_{k=-\infty}^{\infty} e^{-k(k+1) \sigma}>\sqrt{\sigma / \pi} e^{-\sigma / 4} \tag{2.9}
\end{equation*}
$$

For any $f \in L_{1}(I)$ let $p_{f}=p_{f, n-1}$ denote the polynomial of P_{n-1} that interpolates f at the zeros of $U_{n}(x) . M_{n}$ stands for the set of all $f \in L^{1}(I)$ for which $\left(f-p_{f}\right) s g_{n}$ does not change sign on I, and F_{n} (resp. F_{n}^{+}) denotes the set of all $f \in L^{1}(I)$ that are representable in the form

$$
f(x)=p(x)+\int_{-1}^{x} \frac{(x-t)^{n-1}}{(n-1)!} d g(t)
$$

where $g(t)$ is of bounded variation (resp, increasing) on I and $p(\cdot) \in P_{n-1}$. Note that $f \in F_{n}^{+}$means that $f^{(n-1)}$ increases $\left(f^{(n-2)}\right.$ being absolutely continuous), and we have

$$
\begin{equation*}
F_{n}^{+} \subset M_{n} . \tag{2.10}
\end{equation*}
$$

This is trivial if $n=1$. Let therefore $n \geqslant 2$. We may suppose $p(x) \equiv 0$ and $g(-1)=0$. We may further suppose that $g(t)$ is strictly increasing (the general case then follows by approximating $g(t)$ by $g(t)+\varepsilon(t-1)$). Then $f-p_{f}$ has exactly n roots, each of which is simple. Otherwise

$$
\int_{-1}^{x} g(t) d t-\left(a_{1} x+b\right)=f^{(n-2)}(x)-p_{f}^{(n-2)}(x)
$$

would have at least three roots $y_{1}<y_{2}<y_{3}$. This would imply $1 /\left(y_{2}-y_{1}\right)$ $\int_{y_{1}}^{y_{2}} g(t) d t=1 /\left(y_{3}-y_{2}\right) \int_{y_{2}}^{y_{3}} g(t) d t$, and thus $g(t) \equiv$ constant on $\left(y_{1}, y_{3}\right)$ since
$g(t)$ increases. We remark that $\left(f-p_{f}\right) \operatorname{sgn} U_{n} \geqslant 0$ for $f \in F_{n}^{+}$. This follows from the special example $f(x)=x^{n}$ by means of a homotopy argument.

3. Some Elementary Results

From (1.3) we deduce for $t \in I$:

$$
\begin{align*}
V_{n}^{(k)}(t) & =\frac{1}{(n-k-1)!} \cdot \int_{-1}^{t}(t-u)^{n-k-1} s g_{n}(u) d u \\
& \text { for } \quad 0 \leqslant k<n \\
& =s g_{n}(t) \quad \text { for } \quad k=n \text { and } t \neq x_{1}, x_{2}, \ldots, x_{n} \tag{3.1}
\end{align*}
$$

and this yields immediately statements about the zeros of $V_{n}(t)$ and its derivatives.

Theorem 1 (Properties of the Peano-kernel $V_{n}(t)$).
(a) $V_{n}(t)$ is an even function.
(b) $\forall 0 \leqslant k<n$: $V_{n}^{(k)}(t)$ has exactly k zeros on $(-1,1)$.
(c) $\quad V_{n}(t)$ is positive on $(-1,1)$ and strictly increasing on $[-1,0]$.

Proof. (a) This follows from (1.3), since (2.3) and (2.4) imply

$$
\begin{aligned}
\int_{-1}^{-t}(-t-u)^{n-1} s g_{n}(u) d u & =\int_{t}^{1}(-t+v)^{n-1} s g_{n}(-v) d v \\
& =-\int_{t}^{1}(t-v)^{n-1} s g_{n}(v) d v \\
& =\int_{-1}^{t}(t-v)^{n-1} s g_{n}(v) d v
\end{aligned}
$$

(b) Equation (3.1) and (a) imply that +1 and -1 are zeros of $V_{n}(t)$ of order ($n-1$). Using Rolle's theorem k times, we deduce that $V_{n}^{(k)}(t)$ has at least k zeros on $(-1,1)$. Suppose now that $V_{n}^{(k)}(t)$ has more than k zeros on $(-1,1)$. Then (again by Rolle's theorem) $V_{n}^{(n-1)}(t)$ possesses at least n zeros on $(-1,1)$. But $V_{n}^{(n-1)}(t)$ is a piecewise linear function, that vanishes for $t= \pm 1$ and which consists of $(n+1)$ linear (and nonconstant) pieces; therefore $V_{n}^{(n-1)}(t)$ has at most $(n-1)$ zeros on $(-1,1)$.
(c) By (2.3) we have $\operatorname{sg}_{n}(t)=1$ for $t<x_{1}$, and therefore (using (1.3)) $V_{n}(t)>0$ for $-1<t<x_{1}$. Because of (b) we deduce $V_{n}(t)>0$ on $(-1,1)$. Since $V_{n}(t)$ is an even function, the zero of $V_{n}^{\prime}(t)$ is $x=0$. Since $V_{n}(-1)=0$ and $V_{n}(t)>0$ on $(-1,1)$ we have $V_{n}^{\prime}(t)>0$ on $(-1,0)$.

Next we state the above-cited result of Markoff and some consequences of it.

Theorem 2 (Representations and estimates of $E_{n-1}(f)$).
(a) $\quad E_{n-1}(f) \geqslant\left|\int_{-1}^{1} f(t) s g_{n}(t) d t\right|$ if $f \in L^{1}(I)$.
(b) (Markoff) $E_{n-1}(f)=\left\|f-p_{f}\right\|_{1}=\left|\int_{-1}^{1} f(t) s g_{n}(t) d t\right|$ if $f \in M_{n}$.
(c) $E_{n-1}(f)=\left|\int_{-1}^{1} V_{n}(t) d g(t)\right|$ if $f \in M_{n} \cap F_{n}$.
(d) $\left|\int_{-1}^{1} V_{n}(t) d g(t)\right| \leqslant E_{n-1}(f) \leqslant \int_{-1}^{1} V_{n}(t)|d g(t)|$ if $f \in F_{n}$.

Proof. (a) $E_{n-1}(f)=\left\|f-p^{*}\right\|_{1} \geqslant\left|\int_{-1}^{1}\left(f-p^{*}\right) s g_{n}\right|=\left|\int_{-1}^{1} f s g_{n}\right| \quad$ with $p^{*} \in P_{n-1}$ and the use of (2.4).
(b) See [2, p. 91$]$.
(c) If $\varphi(t)$ is integrable and $g(t)$ is of bounded variation on I, then

$$
\begin{equation*}
\int_{-1}^{1} d x \varphi(x) \int_{-1}^{x}(x-t)^{n-1} d g(t)=\int_{-1}^{1} d g(t) \int_{t}^{1}(x-t)^{n-1} \varphi(x) d x \tag{3.2}
\end{equation*}
$$

and therefore (use (2.13), (2.4) and (1.3))

$$
\begin{equation*}
\int_{-1}^{1} s g_{n}(x) f(x) d x=(-1)^{n} \int_{-1}^{1} V_{n}(t) d g(t) \quad \text { for } \quad f \in F_{n} \tag{3.3}
\end{equation*}
$$

This and (b) imply the proposition.
(d) The left inequality is an immediate consequence of (a) and (3.3). Let $\left.f(x)=p(x)+\int_{-1}^{x}\left((x-t)^{n-1}\right) /(n-1)!\right) d g(t)$. Put $h(x)=$ $\left.\int_{-1}^{x}\left((x-t)^{n-1}\right) /(n-1)!\right)|d g(t)|$. Then $h \pm f \in F_{n}^{+} \subset M_{n}$, and therefore

$$
\left\{\left(h-p_{h, n}\right) \pm\left(f-p_{f, n}\right)\right\} \cdot \operatorname{sgn} U_{n} \geqslant 0 .
$$

We deduce

$$
\left|f(x)-p_{f, n}(x)\right| \leqslant\left|h(x)-p_{h, n}(x)\right| \quad \text { for } \quad-1 \leqslant x \leqslant 1
$$

and therefore

$$
E_{n-1}(f) \leqslant\left\|f-p_{f}\right\|_{1} \leqslant\left\|h-p_{h}\right\|_{1}=E_{n-1}(h)=\int_{-1}^{1} V_{n}(t)|d g(t)|
$$

We continue with an alternative representation of $V_{n}(t)$.
Proposition 1. If $n \geqslant 1$ and $-1 \leqslant t \leqslant 1$, then

$$
n!V_{n}(t)=(t+1)^{n}+2 \sum_{k=1}^{n}(-1)^{k}\left(t-x_{k}\right)_{+}^{n}
$$

Proof. By (2.2) and (2.3) we have

$$
s g_{n}(u)=(1+u)_{+}^{0}+2 \sum_{k=1}^{n}(-1)^{k}\left(u-x_{k}\right)_{+}^{0} \quad \text { for } \quad u \neq x_{0}, x_{1}, \ldots, x_{n},
$$

and therefore (1.3) implies

$$
(n-1)!V_{n}(t)=\int_{-1}^{t}(t-u)^{n-1} d u+2 \sum_{\substack{k=1 \\ x_{k} \leqslant t}}^{n}(-1)^{k} \int_{x_{k}}^{t}(t-u)^{n-1} d u
$$

Remark. Since $\left(t-x_{k}\right)_{+}^{n}$ decreases in k, we have

$$
\begin{equation*}
n!V_{n}(t) \leqslant(1-|t|)^{n} \quad \text { for } \quad-1 \leqslant t \leqslant 1 \tag{3.4}
\end{equation*}
$$

We conclude with some lower estimates of $V_{n}(t)$.
Theorem 3 (Quantitative lower estimates of $V_{n}(t)$)
(a) $\quad V_{n}(t) \geqslant\left(\frac{1-t^{2}}{2}\right)^{n} \cdot \frac{1}{n!}$,
(b) $\quad V_{n}(t) \geqslant \frac{(n+1) \gamma_{n}}{\sqrt{2}}\left(\frac{1-t^{2}}{2}\right)^{n+1 / 2} \frac{1}{n!}=\frac{\pi}{4} V_{n}^{*}(t)$,
(c) $\quad V_{n}(t) \geqslant \frac{1}{3} \tilde{V}_{n}(t)$.

Proof. (a) The nth Legendre-polynomial is given by [1, p. 334; \#8.6.18] $\quad P_{n}(x)=1 /\left(2^{n} n!\right)\left(d^{n}\right) /\left(d x^{n}\right)\left(x^{2}-1\right)^{n}$. Using $\quad\left|P_{n}(x)\right| \leqslant 1 \quad$ for $-1 \leqslant x \leqslant 1$, and $\int_{-1}^{1} x^{m} P_{n}(x) d x=0$ for $0 \leqslant m<n$, we obtain for any f with nonnegative continuous $f^{(n)}$:

$$
\begin{aligned}
\int_{-1}^{1} V_{n}(t) f^{(n)}(t) d t & =E_{n-1}(f)=\int_{-1}^{1}\left|f-p_{f}\right| \geqslant\left|\int_{-1}^{1}\left(f-p_{f}\right) \cdot P_{n}\right| \\
& =\left|\int_{-1}^{1} f \cdot P_{n}\right|=\int_{-1}^{1} f^{(n)}(x) \cdot \frac{\left(1-x^{2}\right)^{n}}{2^{n} \cdot n!} d x
\end{aligned}
$$

Since $f^{(n)}$ is an arbitrary nonnegative continuous function, the proposition follows.
(b) We have [1, p. 785; \#22.11.4]

$$
\begin{aligned}
\sqrt{\left(1-x^{2}\right)} U_{n}(x) & =\frac{(n+1) \sqrt{\pi}(-1)^{n}}{2^{n+1} \Gamma(n+3 / 2)} \frac{d^{n}}{d x^{n}}\left(1-x^{2}\right)^{n+1 / 2} \\
& =\frac{(n+1)(-1)^{n} \gamma_{n}}{n!2^{n+1}} \frac{d^{n}}{d x^{n}}\left(1-x^{2}\right)^{n+1 / 2}
\end{aligned}
$$

Using $\int_{-1}^{1} \sqrt{1-x^{2}} U_{n}(x) x^{m} d x=0$ for $m<n[1$, p. 774; \#22.2.5], and

$$
\left|U_{n}(x) \sqrt{1-x^{2}}\right|=|\sin (n+1) \Theta| \leqslant 1 \quad \text { for } \quad-1 \leqslant x \leqslant 1
$$

we deduce for any f with nonnegative continuous $f^{(n)}$:

$$
\begin{aligned}
\int_{-1}^{1} V_{n}(t) f^{(n)}(t) d t & \geqslant\left|\int_{-1}^{1} f(x) U_{n}(x) \sqrt{1-x^{2}} d x\right| \\
& =\frac{(n+1) \gamma_{n}}{n!2^{n+1}} \int_{-1}^{1}\left(1-x^{2}\right)^{n+1 / 2} f^{(n)}(x) d x
\end{aligned}
$$

(c) Add the inequalities (a) and (b) and use (2.9).
4. An Integral Representation of $V_{n}(t)$

Theorem 4. For $-1<t<1$ and $n \in \mathbb{N}$ we have

$$
V_{n}(t)=\frac{2 \sqrt{2}(n+1)}{\pi n!}\left(\frac{1-t^{2}}{2}\right)^{n+1 / 2} \cdot \int_{-1}^{1} \frac{\left(1-u^{2}\right)^{n} d u}{1-\left(t+i u \sqrt{1-t^{2}}\right)^{2(n+1)}}
$$

Proof. Let $x_{l}<t<x_{l+1}$. Proposition 1 yields

$$
\begin{align*}
n!V_{n}(t) & =\left(t-x_{0}\right)^{n}+2 \sum_{k=1}^{l}(-1)^{k}\left(t-x_{k}\right)^{n} \\
& =(n+1) \cdot 2^{1-n} \sum_{\operatorname{Rez}<1} \operatorname{Res}_{F}(z) \tag{4.1}
\end{align*}
$$

since the rational function

$$
F(z)=\frac{\left(z^{2}-2 z t+1\right)^{n}}{1-z^{2(n+1)}}=\frac{z^{n}(z+1 / z-2 t)^{n}}{1-z^{2(n+1)}}
$$

has poles exactly at the $2(n+1)$ th roots of unity and since (put $z_{k}=-\exp (k \pi i /(n+1))$ the corresponding residues are given by

$$
\begin{aligned}
\operatorname{Res}_{F}\left(z_{k}\right) & =\frac{z_{k}^{n} \cdot 2^{n}\left(x_{k}-t\right)^{n}}{-2(n+1) z_{k}^{2 n+1}}=\frac{-z_{k}^{n+1} 2^{n-1}\left(x_{k}-t\right)^{n}}{n+1} \\
& =\frac{(-1)^{k} 2^{n-1}\left(t-x_{k}\right)^{n}}{n+1}=\operatorname{Res}_{F}\left(\bar{z}_{k}\right)
\end{aligned}
$$

Let Γ_{1}, Γ_{2}, and Γ_{3} be paths that join $t-i \sqrt{1-t^{2}}$ with $t+i \sqrt{1-t^{2}}$, where Γ_{1} is a straightline, Γ_{2} lies outside the unitcicle, -1 is positively encircled once by $\Gamma_{1}-\Gamma_{2}$, and Γ_{3} is the image of $-\Gamma_{2}$ under the mapping $z \mapsto 1 / z$.

Since $F(1 / z)=-z^{2} F(z)$, the substitution $z=1 / u$ implies

$$
\begin{equation*}
\int_{-\Gamma_{2}} F(z) d z=\int_{\Gamma_{3}} F(z) d z \tag{4.2}
\end{equation*}
$$

and therefore (4.1), the residue theorem, (4.2), and Cauchy's theorem yield

$$
\begin{equation*}
n!V_{n}(t)=\frac{(n+1) 2^{-n}}{\pi i} \int_{\Gamma_{1}-\Gamma_{2}} F(z) d z=\frac{(n+1) 2^{1-n}}{\pi i} \int_{\Gamma_{1}} F(z) d z \tag{4.3}
\end{equation*}
$$

This implies the desired result by putting $z=z(u)=t+i u \sqrt{1-t^{2}}$. By continuity we get the desired result for $t \in\left\{x_{k} \mid 0<k \leqslant n\right\}$ too.

Since $\left(z^{2}-2 z t+1\right)$ vanishes at the endpoints of Γ_{1}, we obtain by differentiating (4.3) with respect to t for $0 \leqslant k<n$:

$$
\begin{aligned}
& (n-k)!V_{n}^{(k)}(t) \\
& =\frac{(n+1)(-1)^{k}}{\pi i} 2^{1+k-n} \int_{\Gamma_{1}} \frac{\left(z^{2}-2 z t+1\right)^{n-k} \cdot z^{k}}{1-z^{2(n+1)}} d z \\
& =\frac{2 \sqrt{2}(n+1)(-1)^{k}}{\pi}\left(\frac{1-t^{2}}{2}\right)^{n+1 / 2-k} \int_{-1}^{1} \frac{\left(1-u^{2}\right)^{n-k}\left(t+i u \sqrt{1-t^{2}}\right)^{k}}{1-\left\{t+i u \sqrt{1-t^{2}}\right\}^{2(n+1)}} d u
\end{aligned}
$$

For $t=0$ and $k=2 m<n$ we obtain, by comparing with Theorem 3:

$$
\begin{aligned}
& \sum_{1=-[n / 2]}^{[n / 2]}(-1)^{l} \cdot\left\{\cos \frac{l \pi}{n+1 \cdot}\right\}^{n-2 m} \\
& \quad=(-1)^{m} \frac{(n+1) 2^{2 m+1-n}}{\pi} \cdot \int_{-1}^{1} \frac{\left(1-u^{2}\right)^{n-2 m} u^{2 m} d u}{1+(-1)^{n} u^{2(n+1)}}
\end{aligned}
$$

and especially (for $m=0$) (1.7).
We remark that Gould [5] proved

$$
\sum_{l=-[n / 2]}^{[n / 2]}(-1)^{l}\left(\cos \frac{\pi l}{n+1}\right)^{n+1}=(n+1) 2^{-n}
$$

an identity that is equivalent to $\int_{-1}^{0} V_{n}(t) d t=2^{-n}$.
For $-1<t<1$ and $0<\varphi<\pi$ the partial sums of $\sum_{j=0}^{\infty}\left\{t+i \sqrt{1-t^{2}} \cos \varphi\right\}^{2 j(n+1)}$ are dominated by $2 /\left(\left(1-t^{2}\right) \sin ^{2} \varphi\right)$. Using in Theorem 4 the substitution $u=\cos \varphi$, we obtain

$$
\begin{aligned}
V_{n}(t)= & \frac{2(n+1)}{\pi \cdot 2^{n}} \frac{\left(1-t^{2}\right)^{n+1 / 2}}{n!} \int_{0}^{\pi} \frac{(\sin \varphi)^{2 n+1}}{1-\left(t-\sqrt{t^{2}-1} \cos \varphi\right)^{2(n+1)}} d \varphi \\
= & \frac{2(n+1)}{\pi \cdot 2^{n} n!}\left(1-t^{2}\right)^{n+1 / 2} \\
& \cdot \sum_{j=0}^{\infty} \int_{0}^{\pi}(\sin \varphi)^{2 n+1}\left\{t+\sqrt{t^{2}-1} \cos \varphi\right\}^{2 j(n+1)} d \varphi
\end{aligned}
$$

and therefore $[1$, p. 784; \#22.10.10, and p. 777; \#22.4.2] the following expansion in Gegenbauer polynomials.

Proposition 2.

$$
V_{n}(t)=\frac{2^{n+2}}{\pi\binom{2 n+1}{n}} \frac{\left(1-t^{2}\right)^{n+1 / 2}}{n!} \sum_{j=0}^{\infty} \frac{C_{2 j(n+1)}^{(n+1)}(t)}{C_{2 j(n+1)}^{(n+1)}(1)}
$$

holds for $-1<t<1$ and $n \in \mathbb{N}$.

5. The Magnitude of $V_{n}(t)$

Put $(n \geqslant 1 ;-1<t<1)$

$$
\begin{equation*}
V_{n}(t)=V_{n}^{*}(t) \cdot\left\{1+R_{n}(t)\right\} \tag{5.1}
\end{equation*}
$$

with

$$
\gamma_{n} \cdot R_{n}(t)=\int_{-1}^{1} \frac{\left(1-u^{2}\right)^{n}\left\{t+i u \sqrt{1-t^{2}}\right\}^{2(n+1)} d u}{1-\left\{t+i u \sqrt{1-t^{2}}\right\}^{2(n+1)}}
$$

and therefore

$$
\begin{equation*}
\gamma_{n} \cdot\left|R_{n}(t)\right| \leqslant \int_{-1}^{1} \frac{\left(1-u^{2}\right)^{n}\left\{t^{2}+u^{2}\left(1-t^{2}\right)\right\}^{n+1} d u}{1-\left\{t^{2}+u^{2}\left(1-t^{2}\right)\right\}^{n+1}} \tag{5.2}
\end{equation*}
$$

Lemma 1. $(n \geqslant 1 ;-1<t<1$.)
(a) $\left|R_{n}(t)\right| \leqslant 1 / n\left(1-t^{2}\right)$,
(b) $\gamma_{n} \cdot\left|R_{n}(t)\right| \leqslant 8 \cdot\left\{4\left(1-t^{2}\right)\right\}^{-n}$, for $t^{2} \leqslant \frac{1}{2}$

$$
\leqslant 2 t^{2(n-1)} /\left(1-t^{2}\right), \quad \text { for } \quad t^{2} \geqslant \frac{1}{2}
$$

Proof. (a) Since $0 \leqslant b<1$ implies $1-b^{n+1} \geqslant(n+1)(1-b) b^{n}$, we deduce from (5.2):

$$
\begin{aligned}
\gamma_{n}\left|R_{n}(t)\right| & \leqslant \frac{1}{(n+1)\left(1-t^{2}\right)} \int_{-1}^{1}\left(1-u^{2}\right)^{n-1}\left\{t^{2}+u^{2}\left(1-t^{2}\right)\right\} d u \\
& \leqslant \frac{1}{(n+1)\left(1-t^{2}\right)} \gamma_{n-1}=\frac{2 n+1}{2 n(n+1)\left(1-t^{2}\right)} \cdot \gamma_{n}
\end{aligned}
$$

(b) Using

$$
\frac{1-u^{2}}{1-\left\{t^{2}+u^{2}\left(1-t^{2}\right)\right\}^{n+1}} \leqslant \frac{1-u^{2}}{1-\left\{t^{2}+u^{2}\left(1-t^{2}\right)\right\}}=\frac{1}{1-t^{2}}
$$

we obtain from (5.2):

$$
\begin{equation*}
\gamma_{n}\left|R_{n}(t)\right| \leqslant \frac{1}{1-t^{2}} \int_{-1}^{1}\left\{\left(1-u^{2}\right)\left(t^{2}+u^{2}\left[1-t^{2}\right]\right)\right\}^{n-1} d u \tag{5.3}
\end{equation*}
$$

This gives the desired result by estimating the integrand in (5.3) by its maximal value; this integrand is maximal for $1-u^{2}=1 /\left(2\left(1-t^{2}\right)\right)$ if $t^{2} \leqslant \frac{1}{2}$, and for $u=0$ if $t^{2} \geqslant \frac{1}{2}$.

Theorem 5. ($n \geqslant 1 ;-1<t<1$.)
(a) $\frac{1}{3} \tilde{V}_{n}(t) \leqslant V_{n}(t) \leqslant 3 \tilde{V}_{n}(t)$.
(b) $\left|V_{n}(t)-V_{n}^{*}(t)\right| \leqslant \frac{2}{\pi} \sqrt{1-t^{2}} \frac{(n+1)}{n!} \varphi^{n-1}(t)$,
with

$$
\begin{aligned}
\varphi(t) & =\frac{1}{8}, & & \text { for } \quad t^{2} \leqslant \frac{1}{2} \\
& =t^{2}\left(1-t^{2}\right) / 2, & & \text { for } \quad t^{2} \geqslant \frac{1}{2} .
\end{aligned}
$$

Proof. (a) The left inequality was stated in Theorem 3(c). Let $t^{2}<1-1 / n$ and thus $n \geqslant 2$. Then (5.1), Lemma la, (1.5), (1.6), and (2.7) yield (observe $V_{n}^{*}(t) / \tilde{V}_{n}(t) \searrow$ in $\left.t^{2}\right) V_{n}(t) \leqslant 2 V_{n}^{*}(t) \leqslant 3 \tilde{V}_{n}(t)$. Let now $t^{2} \geqslant 1-1 / n$, and thus $n(1-|t|) /(1+|t|) \leqslant(1+|t|)^{-2} \leqslant 1$. Using (3.4) we obtain

$$
\begin{aligned}
V_{n}(t) & =V_{n}(-|t|) \leqslant \frac{(1-|t|)^{n}}{n!}=\left(\frac{1-t^{2}}{2}\right)^{n}\left(\frac{2}{1+|t|}\right)^{n} \frac{1}{n!} \\
& \leqslant \tilde{V}_{n}(t) \cdot\left(1+\frac{1-|t|}{1+|t|}\right)^{n} \leqslant \tilde{V}_{n}(t) \exp \left(n \frac{1-|t|}{1+|t|}\right) \leqslant 3 \tilde{V}_{n}(t) .
\end{aligned}
$$

(b) This follows from (5.1), (1.6) and Lemma 1(b).

6. The Asymptotic Behaviour of $V_{n}(t)$

In this section we will determine a rather simple function $* V_{n}(t)$ with $V_{n}(t)={ }^{*} V_{n}(t) \cdot\{1+O(1 / n)\}$, where $O(\cdot)$ is independent of n and t. We start with a simple consequence of Lemma 1 (use (2.7)).

Lemma 2. $V_{n}(t)=V_{n}^{*}(t) \cdot\left\{1+R_{n}(t)\right\}$ with

$$
\left|R_{n}(t)\right| \leqslant \frac{3}{n} \quad \text { for } \quad|t| \leqslant 1-\frac{3 \log n}{2 n} \text { and } n \geqslant 2
$$

Remark. Similarly one obtains $\left|R_{n}(t)\right| \leqslant c_{k} \cdot n^{-k}$ for $|t| \leqslant 1-(k+1) \times$ $\log n / n$, and even $R_{n}(t)=O\left(\sqrt{n} e^{-\sqrt{n}}\right)$ for $|t| \leqslant 1-1 / \sqrt{n}$. Next we will show that $(1-|t|)^{n} / n!$ is a good approximation for $V_{n}(t)$ in the neighbourhood of 1 .

Lemma 3.

$$
V_{n}(t)=\frac{(1-|t|)^{n}}{n!}\left(1+r_{n}(t)\right)
$$

with

$$
\left|r_{n}(t)\right| \leqslant \frac{1}{n} \quad \text { for } \quad 1>|t| \geqslant 1-\frac{1}{(n+1) \log n} \text { and } n \geqslant 2
$$

Proof. Since $V_{n}(t)$ is an even function, we may suppose $t \leqslant 0$. $(1-\cos x) \cdot x^{-2}$ decreases on $[0, \pi / 2]$, and therefore

$$
\begin{equation*}
(2 / \pi)^{2} \leqslant(1-\cos x) x^{-2} \leqslant \frac{1}{2} \quad \text { for } \quad|x| \leqslant \pi / 2 \tag{6.1}
\end{equation*}
$$

Proposition 1 represents $V_{n}(t)$ by an alternating series and implies

$$
\left|r_{n}(t)\right|=\left|\frac{n!V_{n}(t)}{(1-|t|)^{n}}-1\right| \leqslant 2\left(\frac{t-x_{1}}{1+t}\right)^{n} \quad \text { for } \quad-1<t \leqslant 0
$$

and by (6.1) we have (for $x_{1}<t \leqslant-1+1 /((n+1) \log n)$)

$$
\begin{aligned}
\left(\frac{t-x_{1}}{1+t}\right)^{n} & =\left(1-\frac{1+x_{1}}{1+t}\right)^{n} \leqslant \exp \left\{-n \frac{1+x_{1}}{1+t}\right\} \\
& \leqslant \exp \left\{\frac{-4 n}{(n+1)^{2}(1+t)}\right\} \leqslant \frac{1}{n^{2}}
\end{aligned}
$$

Remark. Similarly one obtains $\quad r_{n}(t) \leqslant n^{-k} \quad$ for $|t| \geqslant 1-1 /$ $(k(n+1) \log n)$ and $n \geqslant 2$ and even $\left|r_{n}(t)\right| \leqslant e^{-\sqrt{n}}$ for $|t| \geqslant$ $1-(n+1)^{-3 / 2}$.

Theorem 6. For $n \geqslant n_{0}$ and $|t|<1$ we have

$$
V_{n}(t)=* V_{n}(t) \cdot\{1+O(1 / n)\}
$$

with

$$
\begin{aligned}
* V_{n}(t) & =V_{n}^{*}(t) \quad \text { if }|t| \leqslant 1-\frac{3}{2} \frac{\log n}{n} \\
& =\frac{(1-|t|)^{n}}{n!} \quad \text { if }|t| \geqslant 1-\frac{1}{(n+1) \log n} \\
& =\left(\frac{1-t^{2}}{2}\right)^{n} \frac{1}{n!} e^{\sigma / 4}\left\{F(\sigma)+\frac{G(\sigma)}{n+1}\right\} \text { else }
\end{aligned}
$$

where

$$
\sigma=(n+1)\left(1-t^{2}\right)
$$

and

$$
G(\sigma)=\left(\frac{3 \sigma^{2}-8 \sigma}{32}\right) F(\sigma)+\frac{\sigma^{2}}{4} F^{\prime}(\sigma)-\frac{\sigma^{2}}{2} F^{\prime \prime}(\sigma)
$$

Proof. It remains the case when

$$
t \in\left[-1+\frac{1}{(n+1) \log n},-1+\frac{3 \log n}{2 n}\right]
$$

which implies (for $n \geqslant 3$)

$$
\begin{equation*}
1-\frac{3 \log n}{n+1} \leqslant t^{2} \leqslant 1-\frac{1}{(n+1) \log n} \tag{6.2}
\end{equation*}
$$

We write $V_{n}(t)=1 /(n!)\left(\left(1-t^{2}\right) / 2\right)^{n} \cdot F_{n}(\sigma)$ with (according to Proposition 1)

$$
\begin{equation*}
F_{n}(\sigma)=\left(\frac{2\left(t-x_{0}\right)}{1-t^{2}}\right)^{n}+2 \sum_{k=1}^{n}(-1)^{k}\left(\frac{2\left(t-x_{k}\right)_{+}}{1-t^{2}}\right)^{n} . \tag{6.3}
\end{equation*}
$$

We have to handle terms of the form

$$
\left(\frac{2\left(t-x_{k}\right)}{1-t^{2}}\right)^{n}=(1-\eta)^{n}
$$

with

$$
\eta=\eta_{k}=\frac{2\left(1-\cos w_{k}\right)}{z}-\frac{2-z-2 \sqrt{1-z}}{z}
$$

where

$$
z=\frac{\sigma}{n+1}=1-t^{2} \quad \text { and } \quad w_{k}=\frac{\pi k}{n+1}
$$

Because of (6.2) we may restrict our considerations to $1 / \log n \leqslant \sigma \leqslant 3 \log n$. Furthermore, we suppose $n \geqslant n_{0}$. By (6.1) we have

$$
\begin{equation*}
0<z<\frac{1}{4}, \quad \text { and } \quad \eta_{k} \geqslant\left(w_{k}^{2} / z-z\right) / 2 . \tag{6.4}
\end{equation*}
$$

Put $l:=[2 \sqrt{\sigma \log n}]+1$. We have by (6.4)

$$
x_{l-1} \leqslant t, \quad \text { and } \quad w_{l} / z \geqslant \pi
$$

and therefore (6.4) implies $z \cdot \eta_{l} \geqslant w_{l}^{2} / 3$, and

$$
\begin{equation*}
\left(1-\eta_{l}\right)_{+}^{n} \leqslant \exp \left(-n \eta_{l}\right) \leqslant \exp \left(-n w_{l}^{2} /(3 z)\right) \leqslant n^{-4} \tag{6.5}
\end{equation*}
$$

Now we consider $0 \leqslant k<l$. We have

$$
w_{k}^{2} / z<\frac{1}{4} \quad \text { and } \quad\left|\eta_{k}\right| \leqslant \max \left(w_{k}^{2} / z, z / 2\right)<\frac{1}{4}
$$

and

$$
\eta_{k}=w_{k}^{2} / z-z / 4-z^{2} / 8+O\left(w_{k}^{4} / z+z^{3}\right) .
$$

We deduce

$$
\begin{aligned}
\log \left(1-\eta_{k}\right)= & \left\{\frac{z}{4}-w_{k}^{2} z^{-1}+\left\{\frac{3}{32} z^{2}+\frac{1}{4} w_{k}^{2}-\frac{1}{2} w_{k}^{4} z^{-2}\right\}\right. \\
& +O\left(z^{3}+w_{k}^{6} z^{-3}\right)
\end{aligned}
$$

and $\left(\right.$ write $\left.\left.n \log \left(1-\eta_{k}\right)\right)=(n+1) \log (\cdots)-n \log (\cdots)\right)$

$$
\begin{aligned}
\left(1-\eta_{k}\right)^{n}= & e^{\sigma / 4} e^{-k^{2} \pi^{2} / \sigma}\left\langle 1+\frac{1}{n+1}\left\{\frac{3 \sigma^{2}-8 \sigma}{32}+k^{2} \pi^{2}\left(\frac{1}{4}+\frac{1}{\sigma}\right)\right.\right. \\
& \left.\left.-\frac{k^{4} \pi^{4}}{2 \sigma^{2}}\right\}+O\left(\frac{\log ^{4} n}{n^{2}}\right)\right\rangle
\end{aligned}
$$

and

$$
\begin{aligned}
e^{-\sigma / 4} \cdot & \left\{\left(1-\eta_{0}\right)^{n}+2 \sum_{k=1}^{t-1}(-1)^{k}\left(1-\eta_{k}\right)^{n}\right\} \\
= & \sum_{|k|<l}(-1)^{k} e^{-k^{2} \pi^{2} / \sigma}\left(1+\frac{1}{(n+1)}\left\{\frac{3 \sigma^{2}-8 \sigma}{32}\right.\right. \\
& \left.\left.+k^{2} \pi^{2}\left(\frac{1}{4}+\frac{1}{\sigma}\right)-\frac{k^{4} \pi^{4}}{2 \sigma^{2}}\right\}\right\rangle+O\left(n^{-2} \log ^{4} n\right) \sum_{k=-\infty}^{\infty} e^{-k^{2} \pi^{2} / \sigma}
\end{aligned}
$$

$$
\begin{aligned}
= & F(\sigma)+\frac{1}{n+1}\left\{\left(\frac{3 \sigma^{2}-8 \sigma}{32}\right) F(\sigma)\right. \\
& \left.+\sum_{k=-\infty}^{\infty}(-1)^{k} e^{-k^{2} \pi^{2} / \sigma}\left\langle\left(\frac{\sigma^{2}}{4}+\sigma\right) \frac{k^{2} \pi^{2}}{\sigma^{2}}-\frac{k^{4} \pi^{4}}{2 \sigma^{2}}\right\rangle\right\} \\
& +O\left(\log ^{5} n / n^{2}\right)
\end{aligned}
$$

since $\sum_{k=-\infty}^{\infty} e^{-k^{2} \pi^{2} / \sigma}=O(1+\sqrt{\sigma})$ and (for example)

$$
\left|\sum_{k=1}^{\infty}(-1)^{k} e^{k^{2} \pi^{2} / \sigma}\right| \leqslant e^{-12 \pi^{2} / \sigma} \leqslant e^{-4 \pi^{2} \log n} \leqslant n^{-2}
$$

Using (6.5) and

$$
F^{\prime}(\sigma)=\sum_{k=-\infty}^{\infty}(-1)^{k} k^{2} \pi^{2} \sigma^{-2} e^{-k^{2} \pi^{2} / \sigma}
$$

and

$$
\left(\sigma^{2} F^{\prime}(\sigma)\right)^{\prime}=\sum_{k=-\infty}^{\infty}(-1)^{k} k^{4} \pi^{4} \sigma^{-2} e^{-k^{2} \pi^{2} / \sigma}
$$

we obtain

$$
F_{n}(\sigma)=e^{\sigma / 4}\left(F(\sigma)+G(\sigma) /(n+1)+O\left(n^{-2} \log ^{5} n\right)\right)
$$

This implies the assertion, since we have $F(\sigma) \geqslant n^{-3 / 4}$ by (2.9), and $G(\sigma)=O\left(\log ^{2} n\right)$ by $\sigma^{k} F^{(k)}(\sigma)=O(1)$ for $k=1,2$ (note that $\sigma F^{\prime}(\sigma)$ and $\left(\sigma^{2} F^{\prime}(\sigma)\right)^{\prime}$ are alternating series with bounded terms).

Remark. From (2.8) and (2.9) one may obtain

$$
F^{\prime}(\sigma)=F(\sigma) \cdot O\left(1+\sigma^{-1}\right), \quad \text { and } \quad F^{\prime \prime}(\sigma)=F(\sigma) \cdot O\left(1+\sigma^{-2}\right)
$$

This yields $G(\sigma)=F(\sigma) \cdot O\left(1+\sigma^{2}\right)$, and thus

$$
\begin{aligned}
\left(F(\sigma)+\frac{G(\sigma)}{n+1}\right)(1+O(1 / n)) & =F(\sigma) \cdot\left(1+O\left(\left(1+\sigma^{2}\right) / n\right)\right) \\
& =F(\sigma) \cdot\left(1+O\left(n^{-1} \log ^{2} n\right)\right) .
\end{aligned}
$$

7. Examples

If f is continuous, then, according to a theorem of Jackson [9, p. 69], the minimizing polynomial is uniquely determined. Therefore, the minimizing
polynomial of a continuous function f is even if f is even, and odd if f is odd. This result and $\left[2\right.$, p. 94] $E_{n-1}\left(x^{n}\right)=2^{1-n}$ imply

$$
\begin{equation*}
E_{n-2}\left(x^{n}\right)=E_{n-1}\left(x^{n}\right)=2^{1-n} \tag{7.1}
\end{equation*}
$$

Lemma 4. $g\left(x^{2}\right) \in M_{2 n}$ and $x g\left(x^{2}\right) \in M_{2 n+1}$ if $g^{(n)}(x) \neq 0$ on $[0,1)$.
Proof. Put $f(x)=g\left(x^{2}\right)$. We shall show that $f-p_{f, 2 n-1}$ has exactly the zeros $x_{2 n, 1} ; x_{2 n, 2} ; \cdots ; x_{2 n, 2 n}$, and changes sign at these points. Note that $x_{2 n, k} \neq 0$. Since f is even, $p_{f, 2 n-1}$ is even too. If

$$
f-p_{f, 2 n-1}=g\left(x^{2}\right)-\sum_{k=0}^{n-1} a_{k} x^{2 k}=g\left(x^{2}\right)-p_{n-1}\left(x^{2}\right)
$$

had another zero or a multiple zero on $(-1,1)$, then $g(u)-p_{n-1}(u)$ would have at least $(n+1)$ zeros on $[0,1)$. This is impossible by Rolle's theorem. The function $x g\left(x^{2}\right)$ may be handled similarly.

Next we collect some identities and inequalities.

Lemma 5 (k denotes a nonnegative integer.)
(a)

$$
\int_{-1}^{1} V_{n}(t) d t=2^{1-n} / n!
$$

(b)

$$
\int_{-1}^{1} V_{n}^{*}(t) \cdot t^{2 k} d t=2^{1-n-2 k} \frac{(2 k)!(n+1)}{k!(n+k+1)!}
$$

(c)

$$
\begin{aligned}
\int_{-1}^{1} \tilde{V}_{n}(t) \cdot t^{2 k} d t= & \pi \cdot 2^{-n-2 k} \frac{(2 k)!}{k!(n+k+1)!} \\
& \times\left\{\frac{\sqrt{n+1}}{\gamma_{n}}+\frac{1}{\gamma_{n+k+1 / 2}}\right\}
\end{aligned}
$$

(d) $\int_{-1}^{1}\left|V_{n}(t)-V_{n}^{*}(t)\right| t^{2 k} d t \leqslant \frac{8^{1-n}}{n!} \frac{n+1}{k+1}$.

Proof. (a) Apply Theorem 2(c) to the function $f(x)=x^{n}$ and use (7.1).
(b) Using (1.6), (2.5) and (for $\alpha, \beta \geqslant 0$)

$$
\begin{equation*}
\int_{-1}^{1}\left(1-t^{2}\right)^{\alpha} t^{2 \beta} d t=B\left(\alpha+1, \beta+\frac{1}{2}\right)=\frac{\Gamma(\alpha+1) \Gamma\left(\beta+\frac{1}{2}\right)}{\Gamma\left(\alpha+\beta+\frac{3}{2}\right)} \tag{7.2}
\end{equation*}
$$

we obtain

$$
\begin{aligned}
\int_{-1}^{1} V_{n}^{*}(t) \cdot t^{2 k} d t & =\frac{2^{1-n}(n+1) \Gamma\left(\frac{1}{2}\right) \Gamma(n+1) \Gamma\left(n+\frac{3}{2} \Gamma\left(k+\frac{1}{2}\right)\right.}{\pi \cdot n!\Gamma\left(n+\frac{3}{2}\right) \cdot \Gamma(n+k+2)} \\
& =\frac{2^{1-n}(n+1) \Gamma\left(\frac{1}{2}\right) \Gamma\left(\frac{1}{2}\right)}{\pi(n+k+1)!} \prod_{i=1}^{k}\left(\frac{2 j-1}{2}\right) .
\end{aligned}
$$

(c) This is proven similarly to (b).
(d) This follows from Theorem 5(b) and from

$$
\int_{-1}^{1} \sqrt{1-t^{2}} \cdot t^{2 k} d t=B\left(\frac{3}{2}, k+\frac{1}{2}\right)=\frac{\Gamma\left(\frac{3}{2}\right) \Gamma\left(k+\frac{1}{2}\right)}{\Gamma(k+2)} .
$$

For $n \geqslant 1$ and $k \geqslant 0$ we put

$$
c_{n, k}=\frac{2^{n-1} \cdot(n+2 k)!}{(2 k)!} \cdot \int_{-1}^{1} V_{n}(t) \cdot t^{2 k} d t
$$

We have $c_{n, 0}=1$ by Lemma 5. Theorem 5, Lemma 5, and (2.7) imply

$$
\begin{equation*}
c_{n, k} \leqslant 8 \frac{(n+2 k)!}{4^{k} k!(n+k)!}=8 \cdot 4^{-k} \cdot\binom{n+2 k}{k} \tag{7.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{8}\binom{n+2 k}{k} \frac{n+1+\sqrt{k}}{n+1+k} \leqslant 4^{k} \cdot c_{n, k} \leqslant 8\binom{n+2 k}{k} \frac{(n+1+\sqrt{k})}{n+k+1} \tag{7.4}
\end{equation*}
$$

Furthermore, we have by Lemma $5\left(\varepsilon=\varepsilon_{n, k}\right.$ with $\left.|\varepsilon| \leqslant 1\right)$

$$
c_{n, k}=\frac{(n+1)(n+2 k)!}{4^{k} \cdot k!(n+k+1)!}\left\{1+\varepsilon \cdot \frac{4^{k+1-n} k!(n+k+1)!}{(k+1)(2 k)!n!}\right\}
$$

Since $\left(2^{k} k!(n+k+1)!\right) /((k+1)(2 k)!)$ increases for $k \leqslant n$ and decreases for $k \geqslant n$, we obtain

$$
\begin{equation*}
c_{n, k}=\frac{(n+1)(n+2 k)!}{4^{k} \cdot k!(n+k+1)!}\left\{1+\varepsilon \cdot 2^{3+k-n}\right\} \tag{7.5}
\end{equation*}
$$

Theorem 7. (a) If $f \in C^{n+2}(I)$, then

$$
2^{n-1} \cdot n!E_{n-1}(f)=\left|f^{(n)}(0)\right|+O(1 / n)\left\{\left|f^{(n+1)}(0)\right|+d_{n, 1}\right\}
$$

where

$$
d_{n, 1}=\sup _{I}\left|f^{(n+2)}(t)\right|\left(1-t^{2}\right)^{n / 2}
$$

(b) If $f \in M_{n}$ possesses a Maclaurin expansin $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$, which is convergent for $|z| \leqslant 1$, then

$$
2^{n-1} \cdot E_{n-1}(f)=\left|\sum_{k=0}^{\infty} c_{n, k} a_{n+2 k}\right|
$$

Proof. (a) We have $f^{(n)}(t)=f^{(n)}(0)+t f^{(n+1)}(0)+h(t)$ and

$$
\begin{aligned}
\int_{-1}^{1} V_{n}(t)|h(t)| d t & =\int_{-1}^{1} V_{n}(t)\left|\int_{0}^{t}(t-u) f^{(n+2)}(u) d u\right| d t \\
& \leqslant \int_{-1}^{1} V_{n}(t) \cdot t \int_{0}^{t}\left|f^{(n+2)}(u)\right| d u d t \\
& \leqslant d_{n, 1} \cdot \int_{0}^{1} \tilde{V}_{n}(t) \cdot t \cdot \int_{0}^{t}\left(1-u^{2}\right)^{-n / 2} d u
\end{aligned}
$$

and

$$
\begin{aligned}
& \int_{0}^{1} \tilde{V}_{n}(t) \cdot t \cdot \int_{0}^{t}\left(1-u^{2}\right)^{-n / 2} d u \\
& \leqslant \frac{2^{-n}}{n!} \int_{0}^{1}\left(1-u^{2}\right)^{-n / 2} \int_{u}^{1} t\left(1-t^{2}\right)^{n} \cdot\left\{1+\sqrt{(n+1)\left(1-t^{2}\right)}\right\} d t d u \\
&=\frac{2^{-n}}{n!}\left\{\frac{1}{2(n+1)} \cdot \gamma_{1+n / 2}+\frac{\sqrt{n+1}}{2 n+3} \cdot \gamma_{(n+3) / 2}\right\} \\
&=\frac{2^{1-n}}{n!} O(1 / n)
\end{aligned}
$$

Using Theorem 2 and the triangle-inequality, and Lemma 5(a), we obtain

$$
\begin{aligned}
E_{n-1}(f) & \geqslant\left|\int_{-1}^{1} V_{n}(t)\left\{f^{(n)}(0)+t f^{(n+1)}(0)\right\} d t\right|-\int_{-1}^{1} V_{n}(t)|h(t)| d t \\
& \geqslant \frac{2^{1-n}}{n!}\left\{\left|f^{(n)}(0)\right|-O\left(\frac{d_{n, 1}}{n}\right)\right\} .
\end{aligned}
$$

On the other hand, we have (using (7.1) and Theorem 2(d))

$$
\begin{aligned}
E_{n-1}(f) \leqslant & E_{n-1}\left(\frac{f^{(n)}(0) t^{n}}{n!}\right)+E_{n-1}\left(\frac{f^{(n+1)}(0) t^{n+1}}{(n+1)!}\right) \\
& +E_{n-1}\left(f(t)-\frac{f^{(n)}(0) t^{n}}{n!}-\frac{f^{(n+1)}(0)}{(n+1)!} t^{n+1}\right), \\
\leqslant & \frac{2^{1-n}}{n!}\left|f^{(n)}(0)\right|+\frac{2^{-n}}{(n+1)!}\left|f^{(n+1)}(0)\right|+\int_{-1}^{1} V_{n}(t)|h(t)| d t \\
= & \frac{2^{1-n}}{n!}\left\{\left|f^{(n)}(0)\right|+O(1 / n)\left(\left|f^{(n+1)}(0)\right|+d_{n, 1}\right)\right\} .
\end{aligned}
$$

(b) $\pm E_{n-1}(f)=\int_{-1}^{1} V_{n}(t) f^{(n)}(t) d t$

$$
\begin{aligned}
& =\sum_{k=0}^{\infty} a_{n+k} \frac{(n+k)!}{k!} \int_{-1}^{1} V_{n}(t) t^{k} d t \\
& =2^{1-n} \sum_{l=0}^{\infty} a_{n+2 l} c_{n, l} .
\end{aligned}
$$

In general we need $f^{(n)}(t) \neq 0$ on I in order to apply Theorem 7(b). If $f^{(n)}(t)$ changes sign on I, one often may use the following theorem (put $d_{n, k}=$ $\sup _{I}\left|f^{(n+2 k)}(t)\right| \cdot\left(1-t^{2}\right)^{n / 2}$ for $n \geqslant 1$ and $\left.k \geqslant 0\right)$.

Theorem 8 ($n \geqslant 1 ; k \geqslant 1 ; 0 \leqslant \delta_{n} \leqslant 1 ; \gamma_{n, k} \geqslant 0$)
(a) If $f \in C^{n+2 k}(I)$ and $f^{(n)}(t)+\gamma_{n, k} t^{2 k} \geqslant 0$ for $|t| \leqslant \delta_{n}$, then

$$
\begin{aligned}
2^{n-1} \cdot n!E_{n-1}(f)= & \sum_{m=0}^{k-1} c_{n, m} \frac{n!}{(n+2 m)!} f^{(n+2 m)}(0) \\
& +O(1)\left(1-\delta_{n}^{2}\right)^{n / 4} \cdot d_{n, 0}+O_{k}\left(n^{-k}\right)\left(\gamma_{n, k}+d_{n, k}\right) .
\end{aligned}
$$

(b) If p possesses a Maclaurin expansion,

$$
f(z)=\sum_{m=0}^{\infty} a_{m} z^{m}
$$

which is convergent for $|z| \leqslant 1$, and if $f^{(n)}(t) \geqslant 0$ for $|t| \leqslant \delta_{n}$, then

$$
2^{n-1} E_{n-1}(f)=\left|\sum_{m=0}^{\infty} c_{n, m} a_{n+2 m}\right|+O(1)\left(1-\delta_{n}^{2}\right)^{n / 4} \cdot d_{n, 0} / n!.
$$

Remark. The first error term in (a) stems from the fact that we do not know the sign of $f^{(n)}(t)$ for $|t| \geqslant \delta_{n}$. The second error term comes in since we
replace the assumption $f^{(n)}(t) \geqslant 0$ by $f^{(n)}(t)+\gamma_{n, k} t^{2 k} \geqslant 0$ for $|t| \leqslant \delta_{n}$. The last error term finally is a consequence of the truncation of the Taylor-series expansion of $f^{(n)}(t)$. The last two error terms may be written as

$$
O\left(n^{-k}\right)\left(\frac{(2 k)!}{4^{k} k!} \cdot \gamma_{n, k}+\frac{2^{k} \Gamma\left(k+\frac{1}{2}\right)}{\Gamma(2 k)} d_{n, k}\right)
$$

Proof (of Theorem 8). (a) We have

$$
\begin{align*}
\left|f^{(n)}(t)\right| & \leqslant f^{(n)}(t)+2 \gamma_{n, k} t^{2 k}, \\
& \tag{7.6}\\
& \text { for } \quad|t| \leqslant \delta_{n} \\
& \leqslant d_{n, 0} \cdot\left(1-t^{2}\right)^{-n / 2}, \\
& \text { else. }
\end{align*}
$$

By Theorem 2(d), (7.6) and Theorem 5, and (7.4) we obtain

$$
\begin{aligned}
0 & \leqslant E_{n-1}(f)-\int_{-1}^{1} V_{n} \cdot f^{(n)} \leqslant \int_{-1}^{1} V_{n} \cdot\left\{\left|f^{(n)}\right|-f^{(n)}\right\} \\
& \leqslant \gamma_{n, k} \cdot \int_{-1}^{1} V_{n}(t) \cdot t^{2 k} d t+d_{n, 0} \int_{\delta_{n}}^{1} \tilde{V}_{n}(t)\left(1-t^{2}\right)^{-n / 2} d t \\
& =\frac{2^{1-n}}{n!}\left\{O\left(n^{-k}\right) \cdot \frac{(2 k)!}{4^{k} k!} \gamma_{n, k}+O\left(\left(1-\delta_{n}^{2}\right)^{n / 4}\right) d_{n, 0}\right\}
\end{aligned}
$$

since (by (1.5), (2.5) and (2.7))

$$
\begin{align*}
& 2^{n-1} \cdot n!\int_{\delta_{n}}^{1} \tilde{V}_{n}(t)\left(1-t^{2}\right)^{-n / 2} d t \\
& \quad \leqslant \sqrt{n} \int_{\delta_{n}}^{1}\left(1-t^{2}\right)^{n / 2} d t \leqslant \sqrt{n}\left(1-\delta_{n}^{2}\right)^{n / 4} \cdot \gamma_{n / 4} \leqslant\left(1-\delta_{n}^{2}\right)^{n / 4} . \tag{7.7}
\end{align*}
$$

Using Mclaurin's expansion for $f^{(n)}(t)$ we get

$$
\begin{aligned}
& \left|\int_{-1}^{1} V_{n}(t) f^{(n)}(t) d t-2^{1-n} \sum_{m=0}^{k-1} \frac{c_{n, m}}{(n+2 m)!} f^{(n+2 m)}(0)\right| \\
& \quad=\left|\int_{-1}^{1} V_{n}(t) \int_{0}^{t} \frac{(t-u)^{2 k-1}}{(2 k-1)!} f^{(n+2 k)}(u) d u d t\right| \\
&
\end{aligned} \begin{aligned}
(2 k-1)! & d_{n, k} \\
& \leqslant \frac{d_{n, k}}{(2 k-1)!} \int_{-1}^{1} \tilde{V}_{n}(t) t^{2 k-1}(t) \int_{0}^{t}\left(1-u^{2}\right)^{-n / 2} d u d t \\
& \leqslant \frac{d_{n, k}}{(2 k-1)!} \cdot \frac{\left.2^{2}\right)^{-n / 2} d t}{n!} 2^{k} \Gamma\left(k+\frac{1}{2}\right) n^{-k}
\end{aligned}
$$

where the last inequality follows by (1.5), (7.2), (2.5), and (2.7).
(b) By Theorem 2(d) we have

$$
\begin{aligned}
E_{n-1}(f) & \leqslant \int_{-1}^{1} V_{n}\left|f^{(n)}\right|=\int_{-\delta_{n}}^{\delta_{n}} V_{n} f^{(n)}+\int_{|t| \geqslant \delta_{n}} V_{n}\left|f^{(n)}\right| \\
& =\int_{-1}^{1} V_{n} f^{(n)}+\int_{|t| \geqslant \delta_{n}} V_{n} \cdot\left\{\left|f^{(n)}\right|-f^{(n)}\right\},
\end{aligned}
$$

and therefore (the last inequality follows from (7.7))

$$
\begin{aligned}
0 & \leqslant E_{n-1}(f)-\int_{-1}^{1} V_{n} f^{(n)} \leqslant \int_{|t| \geqslant \delta_{n}} V_{n}\left|f^{(n)}\right| \\
& \leqslant d_{n, 0} \int_{\delta_{n}}^{1} \tilde{V}_{n}(t)\left(1-t^{2}\right)^{-n / 2} d t \leqslant d_{n, 0} \frac{2^{1-n}}{n!}\left(1-\delta_{n}^{2}\right)^{n / 4} .
\end{aligned}
$$

Remark. If $I=[-1,1]$ is replaced by $[a, b]$, then Theorem $7(a)$ reads as follows

$$
\begin{aligned}
E_{n-1}(f: & {[a, b]) } \\
& =\frac{4}{n!}(L / 2)^{n+1} \cdot\left(\left|f^{(n)}(c)\right|+O(1 / n)\left\{L\left|f^{(n+1)}(c)\right|+L^{2} D_{n, 1}\right\}\right)
\end{aligned}
$$

where

$$
c=(a+b) / 2 ; \quad L=(b-a) / 2
$$

and

$$
D_{n, 1}=\sup _{a \leqslant u \leqslant b}\left|f^{(n+2)}(u)\right| \cdot(\sqrt{(b-u)(u-a)} / L)^{n}
$$

1. Example. $f(x)=e^{a x}$. Theorem 7(a) yields

$$
2^{n-1} \cdot n!E_{n-1}(f)=|a|^{n} \cdot\left\{1+O_{a}(1 / n)\right\}
$$

Using Theorem 7(b), we obtain

$$
2^{n-1} \cdot E_{n-1}(f)=|a|^{n} \cdot \sum_{l=0}^{\infty} \frac{c_{n, l} \cdot a^{2 l}}{(n+2 l)!}
$$

and Theorem 8 implies, for example,

$$
\begin{aligned}
& n!2^{n-1} \cdot E_{n-1}(f) \\
& \quad=|a|^{n} \cdot\left\{1+\frac{a^{2}}{4(n+2)}+\frac{a^{4}}{32(n+2)(n+3)}+O_{a}\left(n^{-3}\right)\right\}
\end{aligned}
$$

Similarly, we might treat the function $f(x)=\int_{0}^{a} e^{x t} d g(t)$ with a monotonic function g, and obtain (for example)

$$
2^{n-1} \cdot n!E_{n-1}(f)=\int_{0}^{a} t^{n} d g(t) \cdot\left\{1+O_{a}(1 / n)\right\}
$$

2. Example. $f(x)=\cos \omega x$ with real ω.

Since f is an even function we have $E_{2 n-1}(f)=E_{2 n-2}(f)$. For $|\omega| \leqslant \pi / 2$ we deduce from Theorem 7(b)

$$
\begin{equation*}
2^{2 n-1} E_{2 n-1}(f)=\omega^{2 n} \sum_{k=0}^{\infty} c_{2 n . k} \frac{\left(-\omega^{2}\right)^{k}}{(2 n+2 k)!} \tag{7.8}
\end{equation*}
$$

and from Theorem 8(a) (with $k=2, \delta_{2 n}=1, \quad \gamma_{2 n, k}=0, d_{2 n, k}=\omega^{2 n+4}$; observe (7.5) and $\omega^{4}=O\left(\omega^{2}\right)$),

$$
\begin{equation*}
\frac{2^{2 n-1}(2 n)!}{\omega^{2 n}} E_{2 n-1}(f)=1-\omega^{2} n^{-1} / 8+O\left(\omega^{2} / n^{2}\right) \tag{7.9}
\end{equation*}
$$

For $|\omega|>\pi / 2$ we use Theorem 8(b) (with $\delta_{2 n}=\pi /(2 \omega)$, and $d_{2 n, 0}=\omega^{2 n}$) or Theorem 8(a) (with $k=2, \delta_{2 n}=\pi /(2 \omega), \gamma_{2 n, k}=0, d_{2 n, k}=\omega^{2 n+4}$) and this leads to an extra error term of the form (put $\left.q=1-(\pi /(2 \omega))^{2}\right)$ $\left(\left(\omega^{2 n}\right) /(2 n)!\right) \cdot O\left(q^{n / 2}\right)$ in (7.8), and $O\left(q^{n / 2}+\omega^{4} n^{-2}\right)$ in (7.9).

We remark that (7.8) does not hold true for all ω, since, for example, for $n=1$ the value of the right hand side of (7.8) is

$$
\omega^{2} \cdot \int_{-1}^{1} V_{1}(t) \cos \omega t d t=2 \omega^{2} \int_{0}^{1}(1-t) \cos \omega t d t=2(1-\cos \omega)
$$

and especially 0 if $\omega=2 \pi$.
3. Example. $f(x)=e^{a x^{2}}$ with $a \neq 0$.

According to Lemma 4 this function is in the Markoff-class $M_{2 n}$. We apply Theorem 7(b) and obtain (let $m \approx n^{1 / 2}$)

$$
\begin{aligned}
\pm 2^{2 n-1} \cdot E_{2 n-1}(f) & =a^{n} \cdot \sum_{k=0}^{\infty} c_{2 n, k} \frac{a^{k}}{(n+k)!} \\
& =a^{n} \cdot\left\{\sum_{k=0}^{m-1} \cdots+\sum_{k=m}^{\infty} \cdots\right\}=a^{n}\{I+I I\} .
\end{aligned}
$$

Since $((2 n+2 k)!) /\left(4^{k}(2 n+k)!(n+k)!\right)$ decreases in k, (7.3) implies $\left(c_{2 n, k}\right) /$ $((n+k)!) \leqslant 8 /(k!n!)$, and therefore $n!\cdot|I I| \leqslant 8 \cdot \sum_{k=m}^{\infty}\left(|a|^{k}\right) /(k!)=O_{a}(1 / n)$. From (7.5) we deduce for $k \leqslant n^{1 / 2}$

$$
\begin{aligned}
n!2^{k} k! & \cdot \frac{c_{2 n, k}}{(n+k)!} \\
= & \frac{(2 n+1)(2 n+k+1)(2 n+k+2)(2 n+k+3) \cdots(2 n+2 k)}{\left.2^{k}(n+1) n+2\right) \cdots(n+k)(2 n+k+1)} \\
& \times\left\{1+O\left(2^{-n}\right)\right\}=1+O\left(\frac{k^{2}}{n}\right)
\end{aligned}
$$

and therefore

$$
\begin{aligned}
n!\cdot I & =\sum_{k=0}^{m-1} \frac{a^{k}}{2^{k} k!}\left(1+O\left(k^{2} / n\right)\right) \\
& =\exp (a / 2)+O(1)\left\{(|a| / 2)^{m} \frac{1}{m!} e^{|a| / 2}+\frac{1}{n} \sum_{k=0}^{\infty} \frac{k^{2}|a|^{k}}{2^{k} k!}\right\} \\
& =\exp (a / 2)+O_{a}(1 / n)
\end{aligned}
$$

Thus, we obtained

$$
E_{2 n-2}(f)=E_{2 n-1}(f)=\frac{2}{n!}(|a| / 4)^{n}\left\{\exp (a / 2)+O_{a}(1 / n)\right\}
$$

4. Example. $f(x)=x^{m}$ with $m>n$.

Similarly to (7.1), we have $E_{n-2}\left(x^{n+2 k}\right)=E_{n-1}\left(x^{n+2 k}\right)$. Now $x^{n+2 k}$ is in the Markoff-class M_{n}, and therefore

$$
E_{n-1}\left(x^{n+2 k}\right)=\frac{(n+2 k)!}{(2 k)!} \int_{-1}^{1} V_{n}(t) \cdot t^{2 k}=2^{1-n} \cdot c_{n, k}
$$

Using (7.4), we obtain the order of $E_{n-1}\left(x^{n+2 k}\right)$, and using (7.5) we get $E_{n-1}\left(x^{n+2 k}\right)$ with an exponentially small relative error, if $2 k \leqslant n$ (see [7] and [8] for the case of L^{∞}-approximation). Using Theorem 6 one could obtain $E_{n-1}\left(x^{n+2 k}\right)$ up to a relative error of the form $O(1 / n)$ for all k.
5. Example. $f(x)=(x-t)_{+}^{n-1} /(n-1)$! for fixed $t \in I$.

We have (by Theorem 2 or by Peano's theorem) $E_{n-1}(f)=V_{n}(t)$. Thus the order of $E_{n-1}(f)$ is given by $\tilde{V}_{n}(t)$.

References

1. M. Abramowitz and I. A. Stegun, Eds. "Handbook of Mathematical Functions," Dover, New York, 1965.
2. N. I. Achieser, "Vorlesungen über Approximationstheorie," Akademie-Verlag, Berlin, 1967.
3. Ph. J. Davis, "Interpolation and Approximation," Blaisdell, New York, 1963.
4. J. H. Freilich, Best and partial best L_{1} approximations by polynomials to certain rational functions, J. Approx. Theory 15 (1975), 41-49.
5. I. J. Good, Polynomial algebra: an application of the fast fourier transform, Nature 222 (1969), 1302.
6. G. Meinardus, "Approximation of Functions: Theory and Numerical Methods," Springer-Verlag, Berlin/Heidelberg/New York, 1967.
7. D. J. Newman and T. J. Rivin, Approximation of monomials by lower degree polynomials, Aequationes Math. 14 (1976), 451-455.
8. R. D. Riess and L. W. Johnson, Estimates for $E_{n}\left(x^{n+2 m}\right)$, Aequationes Math. 8 (1972), 258-262.
9. Th. J. Rivein, "An Introduction to the Approximation of Functions," Blaisdell, Waltham, Mass./Toronto/London, 1969.
10. E. T. Whittaker and G. N. Watson, "A Course of Modern Analysis," Cambridge Univ. Press, Cambridge, 1963.

[^0]: * Supported in part by the National Science Foundation.

